影响超载问题的比特方法

IF 2.7 3区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Charles Cheolgi Lee , Jafar Afshar , Arousha Haghighian Roudsari , Woong-Kee Loh , Wookey Lee
{"title":"影响超载问题的比特方法","authors":"Charles Cheolgi Lee ,&nbsp;Jafar Afshar ,&nbsp;Arousha Haghighian Roudsari ,&nbsp;Woong-Kee Loh ,&nbsp;Wookey Lee","doi":"10.1016/j.datak.2023.102276","DOIUrl":null,"url":null,"abstract":"<div><p><span>Increasingly developing online social networks has enabled users to send or receive information very fast. However, due to the availability of an excessive amount of data in today’s society, managing the information has become very cumbersome, which may lead to the problem of information overload. This highly eminent problem, where the existence of too much relevant information available becomes a hindrance rather than a help, may cause losses, delays, and hardships in making decisions. Thus, in this paper, by defining information overload from a different aspect, we aim to maximize the information propagation while minimizing the information overload (duplication). To do so, we theoretically present the lower and upper bounds for the information overload using a bitwise-based approach as the leverage to mitigate the computation complexities and obtain an approximation ratio of </span><span><math><mrow><mn>1</mn><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>e</mi></mrow></mfrac></mrow></math></span>. We propose two main algorithms, B-square and C-square, and compare them with the existing algorithms. Experiments on two types of datasets, synthetic and real-world networks, verify the effectiveness and efficiency of the proposed approach in addressing the problem.</p></div>","PeriodicalId":55184,"journal":{"name":"Data & Knowledge Engineering","volume":"150 ","pages":"Article 102276"},"PeriodicalIF":2.7000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A bitwise approach on influence overload problem\",\"authors\":\"Charles Cheolgi Lee ,&nbsp;Jafar Afshar ,&nbsp;Arousha Haghighian Roudsari ,&nbsp;Woong-Kee Loh ,&nbsp;Wookey Lee\",\"doi\":\"10.1016/j.datak.2023.102276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Increasingly developing online social networks has enabled users to send or receive information very fast. However, due to the availability of an excessive amount of data in today’s society, managing the information has become very cumbersome, which may lead to the problem of information overload. This highly eminent problem, where the existence of too much relevant information available becomes a hindrance rather than a help, may cause losses, delays, and hardships in making decisions. Thus, in this paper, by defining information overload from a different aspect, we aim to maximize the information propagation while minimizing the information overload (duplication). To do so, we theoretically present the lower and upper bounds for the information overload using a bitwise-based approach as the leverage to mitigate the computation complexities and obtain an approximation ratio of </span><span><math><mrow><mn>1</mn><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>e</mi></mrow></mfrac></mrow></math></span>. We propose two main algorithms, B-square and C-square, and compare them with the existing algorithms. Experiments on two types of datasets, synthetic and real-world networks, verify the effectiveness and efficiency of the proposed approach in addressing the problem.</p></div>\",\"PeriodicalId\":55184,\"journal\":{\"name\":\"Data & Knowledge Engineering\",\"volume\":\"150 \",\"pages\":\"Article 102276\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data & Knowledge Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169023X23001362\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data & Knowledge Engineering","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169023X23001362","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

日益发展的在线社交网络使用户能够快速发送或接收信息。然而,由于当今社会数据量过大,信息管理变得非常繁琐,可能导致信息超载问题。在这个非常突出的问题中,过多相关信息的存在成为一种阻碍而非帮助,可能会造成损失、延误和决策困难。因此,在本文中,我们从另一个角度定义信息过载,旨在最大限度地扩大信息传播,同时最大限度地减少信息过载(重复)。为此,我们从理论上提出了信息过载的下限和上限,使用基于比特的方法作为杠杆,以减轻计算复杂性,并获得 1-1e 的近似率。我们提出了两种主要算法:B-square 和 C-square,并将它们与现有算法进行了比较。在合成网络和真实世界网络两类数据集上进行的实验验证了所提方法在解决问题方面的有效性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A bitwise approach on influence overload problem

Increasingly developing online social networks has enabled users to send or receive information very fast. However, due to the availability of an excessive amount of data in today’s society, managing the information has become very cumbersome, which may lead to the problem of information overload. This highly eminent problem, where the existence of too much relevant information available becomes a hindrance rather than a help, may cause losses, delays, and hardships in making decisions. Thus, in this paper, by defining information overload from a different aspect, we aim to maximize the information propagation while minimizing the information overload (duplication). To do so, we theoretically present the lower and upper bounds for the information overload using a bitwise-based approach as the leverage to mitigate the computation complexities and obtain an approximation ratio of 11e. We propose two main algorithms, B-square and C-square, and compare them with the existing algorithms. Experiments on two types of datasets, synthetic and real-world networks, verify the effectiveness and efficiency of the proposed approach in addressing the problem.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Data & Knowledge Engineering
Data & Knowledge Engineering 工程技术-计算机:人工智能
CiteScore
5.00
自引率
0.00%
发文量
66
审稿时长
6 months
期刊介绍: Data & Knowledge Engineering (DKE) stimulates the exchange of ideas and interaction between these two related fields of interest. DKE reaches a world-wide audience of researchers, designers, managers and users. The major aim of the journal is to identify, investigate and analyze the underlying principles in the design and effective use of these systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信