{"title":"大样本、大维度两步单调不完全抽样下多种群均值向量和协方差矩阵的假设检验","authors":"Shin-ichi Tsukada","doi":"10.1016/j.jmva.2023.105290","DOIUrl":null,"url":null,"abstract":"<div><p><span>In this study, we focus on the critical issue of analyzing data sets with missing data. Statistically processing such data sets, particularly those with general missing data, is challenging to express in explicit formulae, and often requires computational algorithms to solve. We specifically address monotone missing data, which are the simplest form of data sets with missing data. We conduct hypothesis tests to determine the equivalence of mean vectors and covariance matrices across different populations. Furthermore, we derive the properties of </span>likelihood ratio test statistics in scenarios involving large samples and large dimensions.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hypothesis testing for mean vector and covariance matrix of multi-populations under a two-step monotone incomplete sample in large sample and dimension\",\"authors\":\"Shin-ichi Tsukada\",\"doi\":\"10.1016/j.jmva.2023.105290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>In this study, we focus on the critical issue of analyzing data sets with missing data. Statistically processing such data sets, particularly those with general missing data, is challenging to express in explicit formulae, and often requires computational algorithms to solve. We specifically address monotone missing data, which are the simplest form of data sets with missing data. We conduct hypothesis tests to determine the equivalence of mean vectors and covariance matrices across different populations. Furthermore, we derive the properties of </span>likelihood ratio test statistics in scenarios involving large samples and large dimensions.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0047259X23001367\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X23001367","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Hypothesis testing for mean vector and covariance matrix of multi-populations under a two-step monotone incomplete sample in large sample and dimension
In this study, we focus on the critical issue of analyzing data sets with missing data. Statistically processing such data sets, particularly those with general missing data, is challenging to express in explicit formulae, and often requires computational algorithms to solve. We specifically address monotone missing data, which are the simplest form of data sets with missing data. We conduct hypothesis tests to determine the equivalence of mean vectors and covariance matrices across different populations. Furthermore, we derive the properties of likelihood ratio test statistics in scenarios involving large samples and large dimensions.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.