大样本、大维度两步单调不完全抽样下多种群均值向量和协方差矩阵的假设检验

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Shin-ichi Tsukada
{"title":"大样本、大维度两步单调不完全抽样下多种群均值向量和协方差矩阵的假设检验","authors":"Shin-ichi Tsukada","doi":"10.1016/j.jmva.2023.105290","DOIUrl":null,"url":null,"abstract":"<div><p><span>In this study, we focus on the critical issue of analyzing data sets with missing data. Statistically processing such data sets, particularly those with general missing data, is challenging to express in explicit formulae, and often requires computational algorithms to solve. We specifically address monotone missing data, which are the simplest form of data sets with missing data. We conduct hypothesis tests to determine the equivalence of mean vectors and covariance matrices across different populations. Furthermore, we derive the properties of </span>likelihood ratio test statistics in scenarios involving large samples and large dimensions.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hypothesis testing for mean vector and covariance matrix of multi-populations under a two-step monotone incomplete sample in large sample and dimension\",\"authors\":\"Shin-ichi Tsukada\",\"doi\":\"10.1016/j.jmva.2023.105290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>In this study, we focus on the critical issue of analyzing data sets with missing data. Statistically processing such data sets, particularly those with general missing data, is challenging to express in explicit formulae, and often requires computational algorithms to solve. We specifically address monotone missing data, which are the simplest form of data sets with missing data. We conduct hypothesis tests to determine the equivalence of mean vectors and covariance matrices across different populations. Furthermore, we derive the properties of </span>likelihood ratio test statistics in scenarios involving large samples and large dimensions.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0047259X23001367\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X23001367","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们将重点放在分析有缺失数据的数据集这一关键问题上。统计处理这类数据集,特别是那些带有一般缺失数据的数据集,很难用明确的公式表达,通常需要计算算法来解决。我们专门讨论单调缺失数据,这是缺失数据数据集的最简单形式。我们通过假设检验来确定不同人群的均值向量和协方差矩阵的等价性。此外,我们还推导了涉及大样本和高维度情况下的似然比检验统计特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hypothesis testing for mean vector and covariance matrix of multi-populations under a two-step monotone incomplete sample in large sample and dimension

In this study, we focus on the critical issue of analyzing data sets with missing data. Statistically processing such data sets, particularly those with general missing data, is challenging to express in explicit formulae, and often requires computational algorithms to solve. We specifically address monotone missing data, which are the simplest form of data sets with missing data. We conduct hypothesis tests to determine the equivalence of mean vectors and covariance matrices across different populations. Furthermore, we derive the properties of likelihood ratio test statistics in scenarios involving large samples and large dimensions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信