ApHMM:加速轮廓隐马尔可夫模型,实现快速节能的基因组分析

IF 1.5 3区 计算机科学 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Can Firtina, Kamlesh Pillai, Gurpreet S. Kalsi, Bharathwaj Suresh, Damla Senol Cali, Jeremie S. Kim, Taha Shahroodi, Meryem Banu Cavlak, Joël Lindegger, Mohammed Alser, Juan Gómez Luna, Sreenivas Subramoney, Onur Mutlu
{"title":"ApHMM:加速轮廓隐马尔可夫模型,实现快速节能的基因组分析","authors":"Can Firtina, Kamlesh Pillai, Gurpreet S. Kalsi, Bharathwaj Suresh, Damla Senol Cali, Jeremie S. Kim, Taha Shahroodi, Meryem Banu Cavlak, Joël Lindegger, Mohammed Alser, Juan Gómez Luna, Sreenivas Subramoney, Onur Mutlu","doi":"10.1145/3632950","DOIUrl":null,"url":null,"abstract":"<p>Profile hidden Markov models (pHMMs) are widely employed in various bioinformatics applications to identify similarities between biological sequences, such as DNA or protein sequences. In pHMMs, sequences are represented as graph structures, where states and edges capture modifications (i.e., insertions, deletions, and substitutions) by assigning probabilities to them. These probabilities are subsequently used to compute the similarity score between a sequence and a pHMM graph. The Baum-Welch algorithm, a prevalent and highly accurate method, utilizes these probabilities to optimize and compute similarity scores. Accurate computation of these probabilities is essential for the correct identification of sequence similarities. However, the Baum-Welch algorithm is computationally intensive, and existing solutions offer either software-only or hardware-only approaches with fixed pHMM designs. When we analyze state-of-the-art works, we identify an urgent need for a flexible, high-performance, and energy-efficient hardware-software co-design to address the major inefficiencies in the Baum-Welch algorithm for pHMMs. </p><p>We introduce <i>ApHMM</i>, the <i>first</i> flexible acceleration framework designed to significantly reduce both computational and energy overheads associated with the Baum-Welch algorithm for pHMMs. ApHMM employs hardware-software co-design to tackle the major inefficiencies in the Baum-Welch algorithm by 1) designing flexible hardware to accommodate various pHMM designs, 2) exploiting predictable data dependency patterns through on-chip memory with memoization techniques, 3) rapidly filtering out unnecessary computations using a hardware-based filter, and 4) minimizing redundant computations. </p><p>ApHMM achieves substantial speedups of 15.55 × - 260.03 ×, 1.83 × - 5.34 ×, and 27.97 × when compared to CPU, GPU, and FPGA implementations of the Baum-Welch algorithm, respectively. ApHMM outperforms state-of-the-art CPU implementations in three key bioinformatics applications: 1) error correction, 2) protein family search, and 3) multiple sequence alignment, by 1.29 × - 59.94 ×, 1.03 × - 1.75 ×, and 1.03 × - 1.95 ×, respectively, while improving their energy efficiency by 64.24 × - 115.46 ×, 1.75 ×, 1.96 ×.</p>","PeriodicalId":50920,"journal":{"name":"ACM Transactions on Architecture and Code Optimization","volume":"9 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ApHMM: Accelerating Profile Hidden Markov Models for Fast and Energy-Efficient Genome Analysis\",\"authors\":\"Can Firtina, Kamlesh Pillai, Gurpreet S. Kalsi, Bharathwaj Suresh, Damla Senol Cali, Jeremie S. Kim, Taha Shahroodi, Meryem Banu Cavlak, Joël Lindegger, Mohammed Alser, Juan Gómez Luna, Sreenivas Subramoney, Onur Mutlu\",\"doi\":\"10.1145/3632950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Profile hidden Markov models (pHMMs) are widely employed in various bioinformatics applications to identify similarities between biological sequences, such as DNA or protein sequences. In pHMMs, sequences are represented as graph structures, where states and edges capture modifications (i.e., insertions, deletions, and substitutions) by assigning probabilities to them. These probabilities are subsequently used to compute the similarity score between a sequence and a pHMM graph. The Baum-Welch algorithm, a prevalent and highly accurate method, utilizes these probabilities to optimize and compute similarity scores. Accurate computation of these probabilities is essential for the correct identification of sequence similarities. However, the Baum-Welch algorithm is computationally intensive, and existing solutions offer either software-only or hardware-only approaches with fixed pHMM designs. When we analyze state-of-the-art works, we identify an urgent need for a flexible, high-performance, and energy-efficient hardware-software co-design to address the major inefficiencies in the Baum-Welch algorithm for pHMMs. </p><p>We introduce <i>ApHMM</i>, the <i>first</i> flexible acceleration framework designed to significantly reduce both computational and energy overheads associated with the Baum-Welch algorithm for pHMMs. ApHMM employs hardware-software co-design to tackle the major inefficiencies in the Baum-Welch algorithm by 1) designing flexible hardware to accommodate various pHMM designs, 2) exploiting predictable data dependency patterns through on-chip memory with memoization techniques, 3) rapidly filtering out unnecessary computations using a hardware-based filter, and 4) minimizing redundant computations. </p><p>ApHMM achieves substantial speedups of 15.55 × - 260.03 ×, 1.83 × - 5.34 ×, and 27.97 × when compared to CPU, GPU, and FPGA implementations of the Baum-Welch algorithm, respectively. ApHMM outperforms state-of-the-art CPU implementations in three key bioinformatics applications: 1) error correction, 2) protein family search, and 3) multiple sequence alignment, by 1.29 × - 59.94 ×, 1.03 × - 1.75 ×, and 1.03 × - 1.95 ×, respectively, while improving their energy efficiency by 64.24 × - 115.46 ×, 1.75 ×, 1.96 ×.</p>\",\"PeriodicalId\":50920,\"journal\":{\"name\":\"ACM Transactions on Architecture and Code Optimization\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Architecture and Code Optimization\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3632950\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Architecture and Code Optimization","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3632950","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

轮廓隐马尔可夫模型(pHMMs)被广泛应用于各种生物信息学应用中,用于识别 DNA 或蛋白质序列等生物序列之间的相似性。在 pHMMs 中,序列被表示为图结构,其中的状态和边通过分配概率来捕捉修饰(即插入、删除和替换)。这些概率随后用于计算序列与 pHMM 图之间的相似性得分。鲍姆-韦尔奇算法(Baum-Welch algorithm)是一种常用的高精度方法,它利用这些概率来优化和计算相似性得分。准确计算这些概率对于正确识别序列相似性至关重要。然而,Baum-Welch 算法的计算量很大,现有的解决方案要么是纯软件方法,要么是采用固定 pHMM 设计的纯硬件方法。当我们分析最先进的工作时,我们发现迫切需要一种灵活、高性能和高能效的软硬件协同设计,以解决 pHMM 的 Baum-Welch 算法中的主要低效问题。我们介绍了 ApHMM,这是首个灵活的加速框架,旨在显著降低与 pHMM 的 Baum-Welch 算法相关的计算和能耗开销。ApHMM 采用软硬件协同设计来解决 Baum-Welch 算法中的主要低效问题,具体方法包括:1)设计灵活的硬件以适应各种 pHMM 设计;2)通过采用 memoization 技术的片上存储器利用可预测的数据依赖模式;3)使用基于硬件的过滤器快速过滤掉不必要的计算;以及 4)最大限度地减少冗余计算。与鲍姆-韦尔奇算法的 CPU、GPU 和 FPGA 实现相比,ApHMM 分别实现了 15.55 × - 260.03 ×、1.83 × - 5.34 × 和 27.97 × 的大幅提速。在三个关键的生物信息学应用中,ApHMM 的性能优于最先进的 CPU 实现:1)纠错;2)蛋白质族搜索;3)多序列比对,分别提高了 1.29 × - 59.94 ×、1.03 × - 1.75 ×、1.03 × - 1.95 ×,同时能效提高了 64.24 × - 115.46 ×、1.75 ×、1.96 ×。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ApHMM: Accelerating Profile Hidden Markov Models for Fast and Energy-Efficient Genome Analysis

Profile hidden Markov models (pHMMs) are widely employed in various bioinformatics applications to identify similarities between biological sequences, such as DNA or protein sequences. In pHMMs, sequences are represented as graph structures, where states and edges capture modifications (i.e., insertions, deletions, and substitutions) by assigning probabilities to them. These probabilities are subsequently used to compute the similarity score between a sequence and a pHMM graph. The Baum-Welch algorithm, a prevalent and highly accurate method, utilizes these probabilities to optimize and compute similarity scores. Accurate computation of these probabilities is essential for the correct identification of sequence similarities. However, the Baum-Welch algorithm is computationally intensive, and existing solutions offer either software-only or hardware-only approaches with fixed pHMM designs. When we analyze state-of-the-art works, we identify an urgent need for a flexible, high-performance, and energy-efficient hardware-software co-design to address the major inefficiencies in the Baum-Welch algorithm for pHMMs.

We introduce ApHMM, the first flexible acceleration framework designed to significantly reduce both computational and energy overheads associated with the Baum-Welch algorithm for pHMMs. ApHMM employs hardware-software co-design to tackle the major inefficiencies in the Baum-Welch algorithm by 1) designing flexible hardware to accommodate various pHMM designs, 2) exploiting predictable data dependency patterns through on-chip memory with memoization techniques, 3) rapidly filtering out unnecessary computations using a hardware-based filter, and 4) minimizing redundant computations.

ApHMM achieves substantial speedups of 15.55 × - 260.03 ×, 1.83 × - 5.34 ×, and 27.97 × when compared to CPU, GPU, and FPGA implementations of the Baum-Welch algorithm, respectively. ApHMM outperforms state-of-the-art CPU implementations in three key bioinformatics applications: 1) error correction, 2) protein family search, and 3) multiple sequence alignment, by 1.29 × - 59.94 ×, 1.03 × - 1.75 ×, and 1.03 × - 1.95 ×, respectively, while improving their energy efficiency by 64.24 × - 115.46 ×, 1.75 ×, 1.96 ×.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Architecture and Code Optimization
ACM Transactions on Architecture and Code Optimization 工程技术-计算机:理论方法
CiteScore
3.60
自引率
6.20%
发文量
78
审稿时长
6-12 weeks
期刊介绍: ACM Transactions on Architecture and Code Optimization (TACO) focuses on hardware, software, and system research spanning the fields of computer architecture and code optimization. Articles that appear in TACO will either present new techniques and concepts or report on experiences and experiments with actual systems. Insights useful to architects, hardware or software developers, designers, builders, and users will be emphasized.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信