{"title":"多服务器多任务服务系统的基于扩散的人员配置","authors":"Jaap Storm, Wouter Berkelmans, René Bekker","doi":"10.1287/moor.2021.0051","DOIUrl":null,"url":null,"abstract":"We consider a many-server queue in which each server can serve multiple customers in parallel. Such multitasking phenomena occur in various applications areas (e.g., in hospitals and contact centers), although the impact of the number of customers who are simultaneously served on system efficiency may vary. We establish diffusion limits of the queueing process under the quality-and-efficiency-driven scaling and for different policies of assigning customers to servers depending on the number of customers they serve. We show that for a broad class of routing policies, including routing to the least busy server, the same one-dimensional diffusion process is obtained in the heavy-traffic limit. In case of assignment to the most busy server, there is no state-space collapse, and the diffusion limit involves a custom regulator mapping. Moreover, we also show that assigning customers to the least (most) busy server is optimal when the cumulative service rate per server is concave (convex), motivating the routing policies considered. Finally, we also derive diffusion limits in the nonheavy-traffic scaling regime and in the heavy-traffic scaling regime where customers can be reassigned during service.Funding: The research of J. Storm is partly funded by the Netherlands Organization for Scientific Research (NWO) Gravitation project Networks [Grant 024.002.003].","PeriodicalId":49852,"journal":{"name":"Mathematics of Operations Research","volume":"24 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diffusion-Based Staffing for Multitasking Service Systems with Many Servers\",\"authors\":\"Jaap Storm, Wouter Berkelmans, René Bekker\",\"doi\":\"10.1287/moor.2021.0051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a many-server queue in which each server can serve multiple customers in parallel. Such multitasking phenomena occur in various applications areas (e.g., in hospitals and contact centers), although the impact of the number of customers who are simultaneously served on system efficiency may vary. We establish diffusion limits of the queueing process under the quality-and-efficiency-driven scaling and for different policies of assigning customers to servers depending on the number of customers they serve. We show that for a broad class of routing policies, including routing to the least busy server, the same one-dimensional diffusion process is obtained in the heavy-traffic limit. In case of assignment to the most busy server, there is no state-space collapse, and the diffusion limit involves a custom regulator mapping. Moreover, we also show that assigning customers to the least (most) busy server is optimal when the cumulative service rate per server is concave (convex), motivating the routing policies considered. Finally, we also derive diffusion limits in the nonheavy-traffic scaling regime and in the heavy-traffic scaling regime where customers can be reassigned during service.Funding: The research of J. Storm is partly funded by the Netherlands Organization for Scientific Research (NWO) Gravitation project Networks [Grant 024.002.003].\",\"PeriodicalId\":49852,\"journal\":{\"name\":\"Mathematics of Operations Research\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics of Operations Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1287/moor.2021.0051\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Operations Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1287/moor.2021.0051","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Diffusion-Based Staffing for Multitasking Service Systems with Many Servers
We consider a many-server queue in which each server can serve multiple customers in parallel. Such multitasking phenomena occur in various applications areas (e.g., in hospitals and contact centers), although the impact of the number of customers who are simultaneously served on system efficiency may vary. We establish diffusion limits of the queueing process under the quality-and-efficiency-driven scaling and for different policies of assigning customers to servers depending on the number of customers they serve. We show that for a broad class of routing policies, including routing to the least busy server, the same one-dimensional diffusion process is obtained in the heavy-traffic limit. In case of assignment to the most busy server, there is no state-space collapse, and the diffusion limit involves a custom regulator mapping. Moreover, we also show that assigning customers to the least (most) busy server is optimal when the cumulative service rate per server is concave (convex), motivating the routing policies considered. Finally, we also derive diffusion limits in the nonheavy-traffic scaling regime and in the heavy-traffic scaling regime where customers can be reassigned during service.Funding: The research of J. Storm is partly funded by the Netherlands Organization for Scientific Research (NWO) Gravitation project Networks [Grant 024.002.003].
期刊介绍:
Mathematics of Operations Research is an international journal of the Institute for Operations Research and the Management Sciences (INFORMS). The journal invites articles concerned with the mathematical and computational foundations in the areas of continuous, discrete, and stochastic optimization; mathematical programming; dynamic programming; stochastic processes; stochastic models; simulation methodology; control and adaptation; networks; game theory; and decision theory. Also sought are contributions to learning theory and machine learning that have special relevance to decision making, operations research, and management science. The emphasis is on originality, quality, and importance; correctness alone is not sufficient. Significant developments in operations research and management science not having substantial mathematical interest should be directed to other journals such as Management Science or Operations Research.