多服务器多任务服务系统的基于扩散的人员配置

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jaap Storm, Wouter Berkelmans, René Bekker
{"title":"多服务器多任务服务系统的基于扩散的人员配置","authors":"Jaap Storm, Wouter Berkelmans, René Bekker","doi":"10.1287/moor.2021.0051","DOIUrl":null,"url":null,"abstract":"We consider a many-server queue in which each server can serve multiple customers in parallel. Such multitasking phenomena occur in various applications areas (e.g., in hospitals and contact centers), although the impact of the number of customers who are simultaneously served on system efficiency may vary. We establish diffusion limits of the queueing process under the quality-and-efficiency-driven scaling and for different policies of assigning customers to servers depending on the number of customers they serve. We show that for a broad class of routing policies, including routing to the least busy server, the same one-dimensional diffusion process is obtained in the heavy-traffic limit. In case of assignment to the most busy server, there is no state-space collapse, and the diffusion limit involves a custom regulator mapping. Moreover, we also show that assigning customers to the least (most) busy server is optimal when the cumulative service rate per server is concave (convex), motivating the routing policies considered. Finally, we also derive diffusion limits in the nonheavy-traffic scaling regime and in the heavy-traffic scaling regime where customers can be reassigned during service.Funding: The research of J. Storm is partly funded by the Netherlands Organization for Scientific Research (NWO) Gravitation project Networks [Grant 024.002.003].","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diffusion-Based Staffing for Multitasking Service Systems with Many Servers\",\"authors\":\"Jaap Storm, Wouter Berkelmans, René Bekker\",\"doi\":\"10.1287/moor.2021.0051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a many-server queue in which each server can serve multiple customers in parallel. Such multitasking phenomena occur in various applications areas (e.g., in hospitals and contact centers), although the impact of the number of customers who are simultaneously served on system efficiency may vary. We establish diffusion limits of the queueing process under the quality-and-efficiency-driven scaling and for different policies of assigning customers to servers depending on the number of customers they serve. We show that for a broad class of routing policies, including routing to the least busy server, the same one-dimensional diffusion process is obtained in the heavy-traffic limit. In case of assignment to the most busy server, there is no state-space collapse, and the diffusion limit involves a custom regulator mapping. Moreover, we also show that assigning customers to the least (most) busy server is optimal when the cumulative service rate per server is concave (convex), motivating the routing policies considered. Finally, we also derive diffusion limits in the nonheavy-traffic scaling regime and in the heavy-traffic scaling regime where customers can be reassigned during service.Funding: The research of J. Storm is partly funded by the Netherlands Organization for Scientific Research (NWO) Gravitation project Networks [Grant 024.002.003].\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1287/moor.2021.0051\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1287/moor.2021.0051","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑的是一个多服务器队列,其中每个服务器可以并行为多个客户提供服务。这种多任务现象出现在各种应用领域(如医院和联络中心),尽管同时服务的客户数量对系统效率的影响可能各不相同。我们建立了在质量和效率驱动的扩展条件下,以及根据客户数量向服务器分配客户的不同策略下,排队过程的扩散极限。我们证明,对于包括路由到最不繁忙服务器在内的一大类路由策略,在大流量极限下会得到相同的一维扩散过程。在分配给最忙服务器的情况下,不存在状态空间坍塌,扩散极限涉及自定义调节器映射。此外,我们还证明,当每台服务器的累计服务速率为凹(凸)时,将客户分配到最不繁忙(最繁忙)的服务器是最优的,这也是所考虑的路由策略的动机。最后,我们还推导了非大流量扩展机制和大流量扩展机制下的扩散极限,在大流量扩展机制下,客户可以在服务期间重新分配:J. Storm 的研究部分由荷兰科学研究组织(NWO)引力项目网络[Grant 024.002.003]资助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diffusion-Based Staffing for Multitasking Service Systems with Many Servers
We consider a many-server queue in which each server can serve multiple customers in parallel. Such multitasking phenomena occur in various applications areas (e.g., in hospitals and contact centers), although the impact of the number of customers who are simultaneously served on system efficiency may vary. We establish diffusion limits of the queueing process under the quality-and-efficiency-driven scaling and for different policies of assigning customers to servers depending on the number of customers they serve. We show that for a broad class of routing policies, including routing to the least busy server, the same one-dimensional diffusion process is obtained in the heavy-traffic limit. In case of assignment to the most busy server, there is no state-space collapse, and the diffusion limit involves a custom regulator mapping. Moreover, we also show that assigning customers to the least (most) busy server is optimal when the cumulative service rate per server is concave (convex), motivating the routing policies considered. Finally, we also derive diffusion limits in the nonheavy-traffic scaling regime and in the heavy-traffic scaling regime where customers can be reassigned during service.Funding: The research of J. Storm is partly funded by the Netherlands Organization for Scientific Research (NWO) Gravitation project Networks [Grant 024.002.003].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信