在 ISPH-FVM 耦合方法中比较模拟两相流的表面张力模型

IF 2.5 3区 工程技术 Q2 MECHANICS
Yixiang Xu, Gang Yang, Dean Hu
{"title":"在 ISPH-FVM 耦合方法中比较模拟两相流的表面张力模型","authors":"Yixiang Xu,&nbsp;Gang Yang,&nbsp;Dean Hu","doi":"10.1016/j.euromechflu.2023.12.012","DOIUrl":null,"url":null,"abstract":"<div><p>In the simulation of two-phase flow dominated by surface tension, accurate surface tension modeling is beneficial to better reproduce and understand the mechanism of interphase flow. In this paper, based on an ISPH-FVM coupling framework, three different surface tension models are implemented and tested respectively, including the generally used continuum surface force (CSF) model, the continuous surface stress (CSS) model and the height function (HF) model. In the present ISPH-FVM coupling framework, the ISPH particle approximate interpolation technique combined with a volume fraction correction scheme is employed to ensure the volume conservation in the computational domain during the information transfer between particles and grids. Meanwhile, the three surface tension models are discretized and calculated by the volume fraction defined on the FVM grid. The volume fraction of the FVM grid is obtained by approximate interpolation of ISPH particles within the grid support domain. Several benchmark cases are tested to verify the performance of three surface tension models in the ISPH-FVM coupling method. The results show that the CSF model and CSS model have less spurious currents and better robustness than HF model under the present coupling method. In addition, the CSF model and CSS model can simulate the flow regime involving complex interface topology changes more accurately than HF model.</p></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of surface tension models for the simulation of two-phase flow in an ISPH-FVM coupling method\",\"authors\":\"Yixiang Xu,&nbsp;Gang Yang,&nbsp;Dean Hu\",\"doi\":\"10.1016/j.euromechflu.2023.12.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the simulation of two-phase flow dominated by surface tension, accurate surface tension modeling is beneficial to better reproduce and understand the mechanism of interphase flow. In this paper, based on an ISPH-FVM coupling framework, three different surface tension models are implemented and tested respectively, including the generally used continuum surface force (CSF) model, the continuous surface stress (CSS) model and the height function (HF) model. In the present ISPH-FVM coupling framework, the ISPH particle approximate interpolation technique combined with a volume fraction correction scheme is employed to ensure the volume conservation in the computational domain during the information transfer between particles and grids. Meanwhile, the three surface tension models are discretized and calculated by the volume fraction defined on the FVM grid. The volume fraction of the FVM grid is obtained by approximate interpolation of ISPH particles within the grid support domain. Several benchmark cases are tested to verify the performance of three surface tension models in the ISPH-FVM coupling method. The results show that the CSF model and CSS model have less spurious currents and better robustness than HF model under the present coupling method. In addition, the CSF model and CSS model can simulate the flow regime involving complex interface topology changes more accurately than HF model.</p></div>\",\"PeriodicalId\":11985,\"journal\":{\"name\":\"European Journal of Mechanics B-fluids\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Mechanics B-fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0997754623001851\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mechanics B-fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0997754623001851","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

在以表面张力为主导的两相流动模拟中,精确的表面张力建模有利于更好地再现和理解相间流动的机理。本文基于 ISPH-FVM 耦合框架,分别实现并测试了三种不同的表面张力模型,包括常用的连续表面力(CSF)模型、连续表面应力(CSS)模型和高度函数(HF)模型。在本 ISPH-FVM 耦合框架中,采用了 ISPH 粒子近似插值技术和体积分数修正方案,以确保粒子和网格之间的信息传递过程中计算域的体积守恒。同时,三种表面张力模型都是通过 FVM 网格上定义的体积分数进行离散化计算的。FVM 网格的体积分数是通过对网格支持域内的 ISPH 粒子进行近似插值获得的。对几个基准案例进行了测试,以验证 ISPH-FVM 耦合方法中三种表面张力模型的性能。结果表明,在目前的耦合方法下,CSF 模型和 CSS 模型比 HF 模型具有更少的杂散电流和更好的鲁棒性。此外,与高频模型相比,CSF 模型和 CSS 模型能更准确地模拟涉及复杂界面拓扑变化的流态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of surface tension models for the simulation of two-phase flow in an ISPH-FVM coupling method

In the simulation of two-phase flow dominated by surface tension, accurate surface tension modeling is beneficial to better reproduce and understand the mechanism of interphase flow. In this paper, based on an ISPH-FVM coupling framework, three different surface tension models are implemented and tested respectively, including the generally used continuum surface force (CSF) model, the continuous surface stress (CSS) model and the height function (HF) model. In the present ISPH-FVM coupling framework, the ISPH particle approximate interpolation technique combined with a volume fraction correction scheme is employed to ensure the volume conservation in the computational domain during the information transfer between particles and grids. Meanwhile, the three surface tension models are discretized and calculated by the volume fraction defined on the FVM grid. The volume fraction of the FVM grid is obtained by approximate interpolation of ISPH particles within the grid support domain. Several benchmark cases are tested to verify the performance of three surface tension models in the ISPH-FVM coupling method. The results show that the CSF model and CSS model have less spurious currents and better robustness than HF model under the present coupling method. In addition, the CSF model and CSS model can simulate the flow regime involving complex interface topology changes more accurately than HF model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
3.80%
发文量
127
审稿时长
58 days
期刊介绍: The European Journal of Mechanics - B/Fluids publishes papers in all fields of fluid mechanics. Although investigations in well-established areas are within the scope of the journal, recent developments and innovative ideas are particularly welcome. Theoretical, computational and experimental papers are equally welcome. Mathematical methods, be they deterministic or stochastic, analytical or numerical, will be accepted provided they serve to clarify some identifiable problems in fluid mechanics, and provided the significance of results is explained. Similarly, experimental papers must add physical insight in to the understanding of fluid mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信