凸四边形中与方向有关的弦长分布

Pub Date : 2023-12-28 DOI:10.3103/s1068362323060055
D. M. Martirosyan
{"title":"凸四边形中与方向有关的弦长分布","authors":"D. M. Martirosyan","doi":"10.3103/s1068362323060055","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>This work contributes to the research devoted to the recognition of a convex body by probabilistic characteristics of its lower-dimensional sections. In this paper, for any convex quadrilateral, five orientation-dependent characteristics are introduced and explicitly evaluated per direction. In terms of these characteristics, simple explicit representations of the orientation-dependent chord length distribution function and the covariogram are obtained not only for an arbitrary convex quadrilateral but also for any right prism based on it.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Orientation-Dependent Chord Length Distribution in a Convex Quadrilateral\",\"authors\":\"D. M. Martirosyan\",\"doi\":\"10.3103/s1068362323060055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>This work contributes to the research devoted to the recognition of a convex body by probabilistic characteristics of its lower-dimensional sections. In this paper, for any convex quadrilateral, five orientation-dependent characteristics are introduced and explicitly evaluated per direction. In terms of these characteristics, simple explicit representations of the orientation-dependent chord length distribution function and the covariogram are obtained not only for an arbitrary convex quadrilateral but also for any right prism based on it.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3103/s1068362323060055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3103/s1068362323060055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 这项研究致力于通过凸体低维截面的概率特征识别凸体。本文引入了任意凸四边形的五个与方向相关的特征,并对每个方向进行了明确评估。根据这些特征,不仅为任意凸四边形,而且为基于该四边形的任何右棱柱,获得了与方向相关的弦长分布函数和协方差图的简单明确表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Orientation-Dependent Chord Length Distribution in a Convex Quadrilateral

分享
查看原文
Orientation-Dependent Chord Length Distribution in a Convex Quadrilateral

Abstract

This work contributes to the research devoted to the recognition of a convex body by probabilistic characteristics of its lower-dimensional sections. In this paper, for any convex quadrilateral, five orientation-dependent characteristics are introduced and explicitly evaluated per direction. In terms of these characteristics, simple explicit representations of the orientation-dependent chord length distribution function and the covariogram are obtained not only for an arbitrary convex quadrilateral but also for any right prism based on it.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信