非对称噪声分布的指数加权去噪风险边界的简单证明

Pub Date : 2023-12-28 DOI:10.3103/s106836232306002x
A. S. Dalalyan
{"title":"非对称噪声分布的指数加权去噪风险边界的简单证明","authors":"A. S. Dalalyan","doi":"10.3103/s106836232306002x","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>In this note, we consider the problem of aggregation of estimators in order to denoise a signal. The main contribution is a short proof of the fact that the exponentially weighted aggregate satisfies a sharp oracle inequality. While this result was already known for a wide class of symmetric noise distributions, the extension to asymmetric distributions presented in this note is new.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simple Proof of the Risk Bound for Denoising by Exponential Weights for Asymmetric Noise Distributions\",\"authors\":\"A. S. Dalalyan\",\"doi\":\"10.3103/s106836232306002x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>In this note, we consider the problem of aggregation of estimators in order to denoise a signal. The main contribution is a short proof of the fact that the exponentially weighted aggregate satisfies a sharp oracle inequality. While this result was already known for a wide class of symmetric noise distributions, the extension to asymmetric distributions presented in this note is new.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3103/s106836232306002x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3103/s106836232306002x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 在本说明中,我们考虑了为对信号进行去噪而聚合估计子的问题。它的主要贡献在于简短地证明了指数加权集合满足一个尖锐的甲骨文不等式。虽然这一结果在许多对称噪声分布中已为人所知,但本论文将其扩展到非对称分布则是一个新发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Simple Proof of the Risk Bound for Denoising by Exponential Weights for Asymmetric Noise Distributions

Abstract

In this note, we consider the problem of aggregation of estimators in order to denoise a signal. The main contribution is a short proof of the fact that the exponentially weighted aggregate satisfies a sharp oracle inequality. While this result was already known for a wide class of symmetric noise distributions, the extension to asymmetric distributions presented in this note is new.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信