论分数阶系统优化控制问题中庞特里亚金最大原则与汉密尔顿-雅各比-贝尔曼方程之间的关系

IF 0.8 4区 数学 Q2 MATHEMATICS
M. I. Gomoyunov
{"title":"论分数阶系统优化控制问题中庞特里亚金最大原则与汉密尔顿-雅各比-贝尔曼方程之间的关系","authors":"M. I. Gomoyunov","doi":"10.1134/s0012266123011006x","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> We consider the optimal control problem of minimizing the terminal cost functional for a\ndynamical system whose motion is described by a differential equation with Caputo fractional\nderivative. The relationship between the necessary optimality condition in the form of\nPontryagin’s maximum principle and the Hamilton–Jacobi–Bellman equation with so-called\nfractional coinvariant derivatives is studied. It is proved that the costate variable in the\nPontryagin maximum principle coincides, up to sign, with the fractional coinvariant gradient of\nthe optimal result functional calculated along the optimal motion.\n</p>","PeriodicalId":50580,"journal":{"name":"Differential Equations","volume":"46 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Relationship Between the Pontryagin Maximum Principle and the Hamilton–Jacobi–Bellman Equation in Optimal Control Problems for Fractional-Order Systems\",\"authors\":\"M. I. Gomoyunov\",\"doi\":\"10.1134/s0012266123011006x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p> We consider the optimal control problem of minimizing the terminal cost functional for a\\ndynamical system whose motion is described by a differential equation with Caputo fractional\\nderivative. The relationship between the necessary optimality condition in the form of\\nPontryagin’s maximum principle and the Hamilton–Jacobi–Bellman equation with so-called\\nfractional coinvariant derivatives is studied. It is proved that the costate variable in the\\nPontryagin maximum principle coincides, up to sign, with the fractional coinvariant gradient of\\nthe optimal result functional calculated along the optimal motion.\\n</p>\",\"PeriodicalId\":50580,\"journal\":{\"name\":\"Differential Equations\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0012266123011006x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0012266123011006x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 我们考虑了一个最优控制问题,即如何使一个运动由带有卡普托分数导数的微分方程描述的动力系统的终端成本函数最小化。我们研究了庞特里亚金最大原则形式的必要最优条件与带有所谓分数共变导数的汉密尔顿-雅各比-贝尔曼方程之间的关系。研究证明,庞特里亚金最大原理中的代价变量与沿最优运动计算的最优结果函数的分数共变梯度在符号上是重合的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Relationship Between the Pontryagin Maximum Principle and the Hamilton–Jacobi–Bellman Equation in Optimal Control Problems for Fractional-Order Systems

Abstract

We consider the optimal control problem of minimizing the terminal cost functional for a dynamical system whose motion is described by a differential equation with Caputo fractional derivative. The relationship between the necessary optimality condition in the form of Pontryagin’s maximum principle and the Hamilton–Jacobi–Bellman equation with so-called fractional coinvariant derivatives is studied. It is proved that the costate variable in the Pontryagin maximum principle coincides, up to sign, with the fractional coinvariant gradient of the optimal result functional calculated along the optimal motion.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Differential Equations
Differential Equations 数学-数学
CiteScore
1.30
自引率
33.30%
发文量
72
审稿时长
3-8 weeks
期刊介绍: Differential Equations is a journal devoted to differential equations and the associated integral equations. The journal publishes original articles by authors from all countries and accepts manuscripts in English and Russian. The topics of the journal cover ordinary differential equations, partial differential equations, spectral theory of differential operators, integral and integral–differential equations, difference equations and their applications in control theory, mathematical modeling, shell theory, informatics, and oscillation theory. The journal is published in collaboration with the Department of Mathematics and the Division of Nanotechnologies and Information Technologies of the Russian Academy of Sciences and the Institute of Mathematics of the National Academy of Sciences of Belarus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信