论全实线上卷积型非线性积分方程组的解

IF 0.8 4区 数学 Q2 MATHEMATICS
A. A. Davydov, Kh. A. Khachatryan, H. S. Petrosyan
{"title":"论全实线上卷积型非线性积分方程组的解","authors":"A. A. Davydov, Kh. A. Khachatryan, H. S. Petrosyan","doi":"10.1134/s00122661230110058","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> We consider a special system of integral equations of convolution type with a monotone\nconvex nonlinearity naturally arising when searching for stationary or limit states in various\ndynamic models of applied nature, for example, in models of the spread of epidemics, and prove\ntheorems stating the existence or absence of a nontrivial bounded solution with limits at\n<span>\\(\\pm \\infty \\)</span> depending on the values of these limits and on the\nstructure of the matrix kernel of the system. We also study the uniqueness of such a solution\nassuming that it exists. Specific examples of systems whose parameters satisfy the conditions\nstated in our theorems are given.\n</p>","PeriodicalId":50580,"journal":{"name":"Differential Equations","volume":"6 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Solutions of a System of Nonlinear Integral Equations of Convolution Type on the Entire Real Line\",\"authors\":\"A. A. Davydov, Kh. A. Khachatryan, H. S. Petrosyan\",\"doi\":\"10.1134/s00122661230110058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p> We consider a special system of integral equations of convolution type with a monotone\\nconvex nonlinearity naturally arising when searching for stationary or limit states in various\\ndynamic models of applied nature, for example, in models of the spread of epidemics, and prove\\ntheorems stating the existence or absence of a nontrivial bounded solution with limits at\\n<span>\\\\(\\\\pm \\\\infty \\\\)</span> depending on the values of these limits and on the\\nstructure of the matrix kernel of the system. We also study the uniqueness of such a solution\\nassuming that it exists. Specific examples of systems whose parameters satisfy the conditions\\nstated in our theorems are given.\\n</p>\",\"PeriodicalId\":50580,\"journal\":{\"name\":\"Differential Equations\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s00122661230110058\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s00122661230110058","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 我们考虑了卷积型积分方程的一个特殊系统,该系统具有单凸非线性,在寻找应用性质的各种动态模型(例如流行病传播模型)中的静止或极限状态时自然会出现,我们证明了这样一个定理,即是否存在一个非孤立的有界解,其极限为(\pm \infty \),取决于这些极限的值和系统矩阵核的结构。我们还研究了假设存在的这种解的唯一性。我们给出了参数满足我们定理所述条件的系统的具体例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On Solutions of a System of Nonlinear Integral Equations of Convolution Type on the Entire Real Line

On Solutions of a System of Nonlinear Integral Equations of Convolution Type on the Entire Real Line

Abstract

We consider a special system of integral equations of convolution type with a monotone convex nonlinearity naturally arising when searching for stationary or limit states in various dynamic models of applied nature, for example, in models of the spread of epidemics, and prove theorems stating the existence or absence of a nontrivial bounded solution with limits at \(\pm \infty \) depending on the values of these limits and on the structure of the matrix kernel of the system. We also study the uniqueness of such a solution assuming that it exists. Specific examples of systems whose parameters satisfy the conditions stated in our theorems are given.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Differential Equations
Differential Equations 数学-数学
CiteScore
1.30
自引率
33.30%
发文量
72
审稿时长
3-8 weeks
期刊介绍: Differential Equations is a journal devoted to differential equations and the associated integral equations. The journal publishes original articles by authors from all countries and accepts manuscripts in English and Russian. The topics of the journal cover ordinary differential equations, partial differential equations, spectral theory of differential operators, integral and integral–differential equations, difference equations and their applications in control theory, mathematical modeling, shell theory, informatics, and oscillation theory. The journal is published in collaboration with the Department of Mathematics and the Division of Nanotechnologies and Information Technologies of the Russian Academy of Sciences and the Institute of Mathematics of the National Academy of Sciences of Belarus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信