Georg Gottlob, Matthias Lanzinger, Cem Okulmus, Reinhard Pichler
{"title":"对数递归深度下的快速并行超树分解","authors":"Georg Gottlob, Matthias Lanzinger, Cem Okulmus, Reinhard Pichler","doi":"10.1145/3638758","DOIUrl":null,"url":null,"abstract":"<p>Various classic reasoning problems with natural hypergraph representations are known to be tractable if a hypertree decomposition (HD) of low width exists. The resulting algorithms are attractive for practical use in fields like databases and constraint satisfaction. However, algorithmic use of HDs relies on the difficult task of first computing a decomposition of the hypergraph underlying a given problem instance, which is then used to guide the algorithm for this particular instance. The performance of purely sequential methods for computing HDs is inherently limited, yet the problem is, theoretically, amenable to parallelisation. In this paper we propose the first algorithm for computing hypertree decompositions that is well-suited for parallelisation. The newly proposed algorithm log-<i>k</i>-decomp requires only a logarithmic number of recursion levels and additionally allows for highly parallelised pruning of the search space by restriction to so-called balanced separators. We provide a detailed experimental evaluation over the HyperBench benchmark and demonstrate that log-<i>k</i>-decomp outperforms the current state of the art significantly.</p>","PeriodicalId":50915,"journal":{"name":"ACM Transactions on Database Systems","volume":"52 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast Parallel Hypertree Decompositions in Logarithmic Recursion Depth\",\"authors\":\"Georg Gottlob, Matthias Lanzinger, Cem Okulmus, Reinhard Pichler\",\"doi\":\"10.1145/3638758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Various classic reasoning problems with natural hypergraph representations are known to be tractable if a hypertree decomposition (HD) of low width exists. The resulting algorithms are attractive for practical use in fields like databases and constraint satisfaction. However, algorithmic use of HDs relies on the difficult task of first computing a decomposition of the hypergraph underlying a given problem instance, which is then used to guide the algorithm for this particular instance. The performance of purely sequential methods for computing HDs is inherently limited, yet the problem is, theoretically, amenable to parallelisation. In this paper we propose the first algorithm for computing hypertree decompositions that is well-suited for parallelisation. The newly proposed algorithm log-<i>k</i>-decomp requires only a logarithmic number of recursion levels and additionally allows for highly parallelised pruning of the search space by restriction to so-called balanced separators. We provide a detailed experimental evaluation over the HyperBench benchmark and demonstrate that log-<i>k</i>-decomp outperforms the current state of the art significantly.</p>\",\"PeriodicalId\":50915,\"journal\":{\"name\":\"ACM Transactions on Database Systems\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Database Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3638758\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Database Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3638758","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Fast Parallel Hypertree Decompositions in Logarithmic Recursion Depth
Various classic reasoning problems with natural hypergraph representations are known to be tractable if a hypertree decomposition (HD) of low width exists. The resulting algorithms are attractive for practical use in fields like databases and constraint satisfaction. However, algorithmic use of HDs relies on the difficult task of first computing a decomposition of the hypergraph underlying a given problem instance, which is then used to guide the algorithm for this particular instance. The performance of purely sequential methods for computing HDs is inherently limited, yet the problem is, theoretically, amenable to parallelisation. In this paper we propose the first algorithm for computing hypertree decompositions that is well-suited for parallelisation. The newly proposed algorithm log-k-decomp requires only a logarithmic number of recursion levels and additionally allows for highly parallelised pruning of the search space by restriction to so-called balanced separators. We provide a detailed experimental evaluation over the HyperBench benchmark and demonstrate that log-k-decomp outperforms the current state of the art significantly.
期刊介绍:
Heavily used in both academic and corporate R&D settings, ACM Transactions on Database Systems (TODS) is a key publication for computer scientists working in data abstraction, data modeling, and designing data management systems. Topics include storage and retrieval, transaction management, distributed and federated databases, semantics of data, intelligent databases, and operations and algorithms relating to these areas. In this rapidly changing field, TODS provides insights into the thoughts of the best minds in database R&D.