Vincenzo Pasquadibisceglie, Annalisa Appice, Giuseppe Ieva, Donato Malerba
{"title":"TSUNAMI - 在不断变化的零售数据环境中预测客户流失的可解释 PPM 方法","authors":"Vincenzo Pasquadibisceglie, Annalisa Appice, Giuseppe Ieva, Donato Malerba","doi":"10.1007/s10844-023-00838-5","DOIUrl":null,"url":null,"abstract":"<p>Retail companies are greatly interested in performing continuous monitoring of purchase traces of customers, to identify weak customers and take the necessary actions to improve customer satisfaction and ensure their revenues remain unaffected. In this paper, we formulate the customer churn prediction problem as a Predictive Process Monitoring (PPM) problem to be addressed under possible dynamic conditions of evolving retail data environments. To this aim, we propose <span>TSUNAMI</span> as a PPM approach to monitor the customer loyalty in the retail sector. It processes online the sale receipt stream produced by customers of a retail business company and learns a deep neural model to early detect possible purchase customer traces that will outcome in future churners. In addition, the proposed approach integrates a mechanism to detect concept drifts in customer purchase traces and adapts the deep neural model to concept drifts. Finally, to make decisions of customer purchase monitoring explainable to potential stakeholders, we analyse Shapley values of decisions, to explain which characteristics of the customer purchase traces are the most relevant for disentangling churners from non-churners and how these characteristics have possibly changed over time. Experiments with two benchmark retail data sets explore the effectiveness of the proposed approach.</p>","PeriodicalId":56119,"journal":{"name":"Journal of Intelligent Information Systems","volume":"37 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TSUNAMI - an explainable PPM approach for customer churn prediction in evolving retail data environments\",\"authors\":\"Vincenzo Pasquadibisceglie, Annalisa Appice, Giuseppe Ieva, Donato Malerba\",\"doi\":\"10.1007/s10844-023-00838-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Retail companies are greatly interested in performing continuous monitoring of purchase traces of customers, to identify weak customers and take the necessary actions to improve customer satisfaction and ensure their revenues remain unaffected. In this paper, we formulate the customer churn prediction problem as a Predictive Process Monitoring (PPM) problem to be addressed under possible dynamic conditions of evolving retail data environments. To this aim, we propose <span>TSUNAMI</span> as a PPM approach to monitor the customer loyalty in the retail sector. It processes online the sale receipt stream produced by customers of a retail business company and learns a deep neural model to early detect possible purchase customer traces that will outcome in future churners. In addition, the proposed approach integrates a mechanism to detect concept drifts in customer purchase traces and adapts the deep neural model to concept drifts. Finally, to make decisions of customer purchase monitoring explainable to potential stakeholders, we analyse Shapley values of decisions, to explain which characteristics of the customer purchase traces are the most relevant for disentangling churners from non-churners and how these characteristics have possibly changed over time. Experiments with two benchmark retail data sets explore the effectiveness of the proposed approach.</p>\",\"PeriodicalId\":56119,\"journal\":{\"name\":\"Journal of Intelligent Information Systems\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Information Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10844-023-00838-5\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10844-023-00838-5","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
TSUNAMI - an explainable PPM approach for customer churn prediction in evolving retail data environments
Retail companies are greatly interested in performing continuous monitoring of purchase traces of customers, to identify weak customers and take the necessary actions to improve customer satisfaction and ensure their revenues remain unaffected. In this paper, we formulate the customer churn prediction problem as a Predictive Process Monitoring (PPM) problem to be addressed under possible dynamic conditions of evolving retail data environments. To this aim, we propose TSUNAMI as a PPM approach to monitor the customer loyalty in the retail sector. It processes online the sale receipt stream produced by customers of a retail business company and learns a deep neural model to early detect possible purchase customer traces that will outcome in future churners. In addition, the proposed approach integrates a mechanism to detect concept drifts in customer purchase traces and adapts the deep neural model to concept drifts. Finally, to make decisions of customer purchase monitoring explainable to potential stakeholders, we analyse Shapley values of decisions, to explain which characteristics of the customer purchase traces are the most relevant for disentangling churners from non-churners and how these characteristics have possibly changed over time. Experiments with two benchmark retail data sets explore the effectiveness of the proposed approach.
期刊介绍:
The mission of the Journal of Intelligent Information Systems: Integrating Artifical Intelligence and Database Technologies is to foster and present research and development results focused on the integration of artificial intelligence and database technologies to create next generation information systems - Intelligent Information Systems.
These new information systems embody knowledge that allows them to exhibit intelligent behavior, cooperate with users and other systems in problem solving, discovery, access, retrieval and manipulation of a wide variety of multimedia data and knowledge, and reason under uncertainty. Increasingly, knowledge-directed inference processes are being used to:
discover knowledge from large data collections,
provide cooperative support to users in complex query formulation and refinement,
access, retrieve, store and manage large collections of multimedia data and knowledge,
integrate information from multiple heterogeneous data and knowledge sources, and
reason about information under uncertain conditions.
Multimedia and hypermedia information systems now operate on a global scale over the Internet, and new tools and techniques are needed to manage these dynamic and evolving information spaces.
The Journal of Intelligent Information Systems provides a forum wherein academics, researchers and practitioners may publish high-quality, original and state-of-the-art papers describing theoretical aspects, systems architectures, analysis and design tools and techniques, and implementation experiences in intelligent information systems. The categories of papers published by JIIS include: research papers, invited papters, meetings, workshop and conference annoucements and reports, survey and tutorial articles, and book reviews. Short articles describing open problems or their solutions are also welcome.