{"title":"从 eigengaps 的相关衰减中得出的 GUE 矩阵总和与蜂巢浓度","authors":"Hariharan Narayanan, Scott Sheffield, Terence Tao","doi":"10.1007/s00440-023-01250-4","DOIUrl":null,"url":null,"abstract":"<p>Associated to two given sequences of eigenvalues <span>\\(\\lambda _1 \\ge \\cdots \\ge \\lambda _n\\)</span> and <span>\\(\\mu _1 \\ge \\cdots \\ge \\mu _n\\)</span> is a natural polytope, the polytope of <i>augmented hives</i> with the specified boundary data, which is associated to sums of random Hermitian matrices with these eigenvalues. As a first step towards the asymptotic analysis of random hives, we show that if the eigenvalues are drawn from the GUE ensemble, then the associated augmented hives exhibit concentration as <span>\\(n \\rightarrow \\infty \\)</span>. Our main ingredients include a representation due to Speyer of augmented hives involving a supremum of linear functions applied to a product of Gelfand–Tsetlin polytopes; known results by Klartag on the KLS conjecture in order to handle the aforementioned supremum; covariance bounds of Cipolloni–Erdős–Schröder of eigenvalue gaps of GUE; and the use of the theory of determinantal processes to analyze the GUE minor process.</p>","PeriodicalId":20527,"journal":{"name":"Probability Theory and Related Fields","volume":"32 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sums of GUE matrices and concentration of hives from correlation decay of eigengaps\",\"authors\":\"Hariharan Narayanan, Scott Sheffield, Terence Tao\",\"doi\":\"10.1007/s00440-023-01250-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Associated to two given sequences of eigenvalues <span>\\\\(\\\\lambda _1 \\\\ge \\\\cdots \\\\ge \\\\lambda _n\\\\)</span> and <span>\\\\(\\\\mu _1 \\\\ge \\\\cdots \\\\ge \\\\mu _n\\\\)</span> is a natural polytope, the polytope of <i>augmented hives</i> with the specified boundary data, which is associated to sums of random Hermitian matrices with these eigenvalues. As a first step towards the asymptotic analysis of random hives, we show that if the eigenvalues are drawn from the GUE ensemble, then the associated augmented hives exhibit concentration as <span>\\\\(n \\\\rightarrow \\\\infty \\\\)</span>. Our main ingredients include a representation due to Speyer of augmented hives involving a supremum of linear functions applied to a product of Gelfand–Tsetlin polytopes; known results by Klartag on the KLS conjecture in order to handle the aforementioned supremum; covariance bounds of Cipolloni–Erdős–Schröder of eigenvalue gaps of GUE; and the use of the theory of determinantal processes to analyze the GUE minor process.</p>\",\"PeriodicalId\":20527,\"journal\":{\"name\":\"Probability Theory and Related Fields\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probability Theory and Related Fields\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00440-023-01250-4\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Theory and Related Fields","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00440-023-01250-4","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Sums of GUE matrices and concentration of hives from correlation decay of eigengaps
Associated to two given sequences of eigenvalues \(\lambda _1 \ge \cdots \ge \lambda _n\) and \(\mu _1 \ge \cdots \ge \mu _n\) is a natural polytope, the polytope of augmented hives with the specified boundary data, which is associated to sums of random Hermitian matrices with these eigenvalues. As a first step towards the asymptotic analysis of random hives, we show that if the eigenvalues are drawn from the GUE ensemble, then the associated augmented hives exhibit concentration as \(n \rightarrow \infty \). Our main ingredients include a representation due to Speyer of augmented hives involving a supremum of linear functions applied to a product of Gelfand–Tsetlin polytopes; known results by Klartag on the KLS conjecture in order to handle the aforementioned supremum; covariance bounds of Cipolloni–Erdős–Schröder of eigenvalue gaps of GUE; and the use of the theory of determinantal processes to analyze the GUE minor process.
期刊介绍:
Probability Theory and Related Fields publishes research papers in modern probability theory and its various fields of application. Thus, subjects of interest include: mathematical statistical physics, mathematical statistics, mathematical biology, theoretical computer science, and applications of probability theory to other areas of mathematics such as combinatorics, analysis, ergodic theory and geometry. Survey papers on emerging areas of importance may be considered for publication. The main languages of publication are English, French and German.