具有不可忽略的非响应数据的广义加性偏线性模型中的半参数估计

IF 1.2 3区 数学 Q2 STATISTICS & PROBABILITY
Jierui Du, Xia Cui
{"title":"具有不可忽略的非响应数据的广义加性偏线性模型中的半参数估计","authors":"Jierui Du, Xia Cui","doi":"10.1007/s00362-023-01522-0","DOIUrl":null,"url":null,"abstract":"<p>We address the semiparametric challenge of identifying and estimating generalized additive partial linear models with nonignorable missingness in the response. Identifiability is ensured under instrumental variable assumption that there is an instrumental covariate related to the prospensity but unrelated to the response variable, or the assumption that the conditional score function is linear in the response variable. We propose a new estimating equation for the prospensity by taking expectation of the unobservable part on a linear combination of all covariates rather than the covariates themselves. This estimating equation does not suffer from the typical curse of dimensionality. Then the unknown nonparametric function is approximated by polynomial spline basis functions and we construct estimating equations for mean of response based on the inverse probability weighting. Under some regular conditions, we establish asymptotic normality of the proposed estimators for parametric components and consistency of the estimators of nonparametric functions. Simulation studies demonstrate that the proposed inference procedure performs well in many settings. The proposed method is applied to analyze the household income dataset from the Chinese Household Income Project Survey 2013.</p>","PeriodicalId":51166,"journal":{"name":"Statistical Papers","volume":"18 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semiparametric estimation in generalized additive partial linear models with nonignorable nonresponse data\",\"authors\":\"Jierui Du, Xia Cui\",\"doi\":\"10.1007/s00362-023-01522-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We address the semiparametric challenge of identifying and estimating generalized additive partial linear models with nonignorable missingness in the response. Identifiability is ensured under instrumental variable assumption that there is an instrumental covariate related to the prospensity but unrelated to the response variable, or the assumption that the conditional score function is linear in the response variable. We propose a new estimating equation for the prospensity by taking expectation of the unobservable part on a linear combination of all covariates rather than the covariates themselves. This estimating equation does not suffer from the typical curse of dimensionality. Then the unknown nonparametric function is approximated by polynomial spline basis functions and we construct estimating equations for mean of response based on the inverse probability weighting. Under some regular conditions, we establish asymptotic normality of the proposed estimators for parametric components and consistency of the estimators of nonparametric functions. Simulation studies demonstrate that the proposed inference procedure performs well in many settings. The proposed method is applied to analyze the household income dataset from the Chinese Household Income Project Survey 2013.</p>\",\"PeriodicalId\":51166,\"journal\":{\"name\":\"Statistical Papers\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Papers\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00362-023-01522-0\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Papers","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00362-023-01522-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

我们要解决的半参数难题是识别和估计具有不可忽略的缺失响应的广义加性偏线性模型。在工具变量假设(即存在一个与倾向相关但与响应变量无关的工具协变量)或条件得分函数与响应变量呈线性关系的假设下,可识别性得到了保证。我们提出了一个新的前强度估计方程,即对所有协变量的线性组合而非协变量本身的不可观测部分进行期望。这种估计方程不会受到典型的维度诅咒的影响。然后,用多项式样条曲线基函数逼近未知非参数函数,并根据反概率加权构建响应均值估计方程。在一些常规条件下,我们建立了参数成分估计值的渐近正态性和非参数函数估计值的一致性。模拟研究表明,所提出的推理过程在许多情况下都表现良好。我们将提出的方法用于分析 2013 年中国家庭收入项目调查的家庭收入数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Semiparametric estimation in generalized additive partial linear models with nonignorable nonresponse data

Semiparametric estimation in generalized additive partial linear models with nonignorable nonresponse data

We address the semiparametric challenge of identifying and estimating generalized additive partial linear models with nonignorable missingness in the response. Identifiability is ensured under instrumental variable assumption that there is an instrumental covariate related to the prospensity but unrelated to the response variable, or the assumption that the conditional score function is linear in the response variable. We propose a new estimating equation for the prospensity by taking expectation of the unobservable part on a linear combination of all covariates rather than the covariates themselves. This estimating equation does not suffer from the typical curse of dimensionality. Then the unknown nonparametric function is approximated by polynomial spline basis functions and we construct estimating equations for mean of response based on the inverse probability weighting. Under some regular conditions, we establish asymptotic normality of the proposed estimators for parametric components and consistency of the estimators of nonparametric functions. Simulation studies demonstrate that the proposed inference procedure performs well in many settings. The proposed method is applied to analyze the household income dataset from the Chinese Household Income Project Survey 2013.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistical Papers
Statistical Papers 数学-统计学与概率论
CiteScore
2.80
自引率
7.70%
发文量
95
审稿时长
6-12 weeks
期刊介绍: The journal Statistical Papers addresses itself to all persons and organizations that have to deal with statistical methods in their own field of work. It attempts to provide a forum for the presentation and critical assessment of statistical methods, in particular for the discussion of their methodological foundations as well as their potential applications. Methods that have broad applications will be preferred. However, special attention is given to those statistical methods which are relevant to the economic and social sciences. In addition to original research papers, readers will find survey articles, short notes, reports on statistical software, problem section, and book reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信