从模态视角看建构主义理论

Pub Date : 2023-12-30 DOI:10.1093/jigpal/jzad029
Matteo Tesi
{"title":"从模态视角看建构主义理论","authors":"Matteo Tesi","doi":"10.1093/jigpal/jzad029","DOIUrl":null,"url":null,"abstract":"We present a uniform proof-theoretic proof of the Gödel–McKinsey–Tarski embedding for a class of first-order intuitionistic theories. This is achieved by adapting to the case of modal logic the methods of proof analysis in order to convert axioms into rules of inference of a suitable sequent calculus. The soundness and the faithfulness of the embedding are proved by induction on the height of the derivations in the augmented calculi. Finally, we define an extension of the modal system for which the result holds with respect to geometric intuitionistic.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constructive theories through a modal lens\",\"authors\":\"Matteo Tesi\",\"doi\":\"10.1093/jigpal/jzad029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a uniform proof-theoretic proof of the Gödel–McKinsey–Tarski embedding for a class of first-order intuitionistic theories. This is achieved by adapting to the case of modal logic the methods of proof analysis in order to convert axioms into rules of inference of a suitable sequent calculus. The soundness and the faithfulness of the embedding are proved by induction on the height of the derivations in the augmented calculi. Finally, we define an extension of the modal system for which the result holds with respect to geometric intuitionistic.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/jigpal/jzad029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jigpal/jzad029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一类一阶直观论的哥德尔-麦金赛-塔尔斯基嵌入的统一证明论证。这是通过将证明分析的方法调整到模态逻辑的情况中来实现的,以便将公理转换成合适的序列微积分的推理规则。嵌入的健全性和忠实性是通过对增强计算中导数高度的归纳来证明的。最后,我们定义了一个模态系统的扩展,其结果在几何直观方面是成立的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Constructive theories through a modal lens
We present a uniform proof-theoretic proof of the Gödel–McKinsey–Tarski embedding for a class of first-order intuitionistic theories. This is achieved by adapting to the case of modal logic the methods of proof analysis in order to convert axioms into rules of inference of a suitable sequent calculus. The soundness and the faithfulness of the embedding are proved by induction on the height of the derivations in the augmented calculi. Finally, we define an extension of the modal system for which the result holds with respect to geometric intuitionistic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信