T 细胞受体结合预测:机器学习革命

Anna Weber, Aurélien Pélissier, María Rodríguez Martínez
{"title":"T 细胞受体结合预测:机器学习革命","authors":"Anna Weber, Aurélien Pélissier, María Rodríguez Martínez","doi":"arxiv-2312.16594","DOIUrl":null,"url":null,"abstract":"Recent advancements in immune sequencing and experimental techniques are\ngenerating extensive T cell receptor (TCR) repertoire data, enabling the\ndevelopment of models to predict TCR binding specificity. Despite the\ncomputational challenges due to the vast diversity of TCRs and epitopes,\nsignificant progress has been made. This paper discusses the evolution of the\ncomputational models developed for this task, with a focus on machine learning\nefforts, including the early unsupervised clustering approaches, supervised\nmodels, and the more recent applications of Protein Language Models (PLMs). We\ncritically assess the most prominent models in each category, and discuss\nrecurrent challenges, such as the lack of generalization to new epitopes,\ndataset biases, and biases in the validation design of the models. Furthermore, our paper discusses the transformative role of transformer-based\nprotein models in bioinformatics. These models, pretrained on extensive\ncollections of unlabeled protein sequences, can convert amino acid sequences\ninto vectorized embeddings that capture important biological properties. We\ndiscuss recent attempts to leverage PLMs to deliver very competitive\nperformances in TCR-related tasks. Finally, we address the pressing need for\nimproved interpretability in these often opaque models, proposing strategies to\namplify their impact in the field.","PeriodicalId":501170,"journal":{"name":"arXiv - QuanBio - Subcellular Processes","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"T cell receptor binding prediction: A machine learning revolution\",\"authors\":\"Anna Weber, Aurélien Pélissier, María Rodríguez Martínez\",\"doi\":\"arxiv-2312.16594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent advancements in immune sequencing and experimental techniques are\\ngenerating extensive T cell receptor (TCR) repertoire data, enabling the\\ndevelopment of models to predict TCR binding specificity. Despite the\\ncomputational challenges due to the vast diversity of TCRs and epitopes,\\nsignificant progress has been made. This paper discusses the evolution of the\\ncomputational models developed for this task, with a focus on machine learning\\nefforts, including the early unsupervised clustering approaches, supervised\\nmodels, and the more recent applications of Protein Language Models (PLMs). We\\ncritically assess the most prominent models in each category, and discuss\\nrecurrent challenges, such as the lack of generalization to new epitopes,\\ndataset biases, and biases in the validation design of the models. Furthermore, our paper discusses the transformative role of transformer-based\\nprotein models in bioinformatics. These models, pretrained on extensive\\ncollections of unlabeled protein sequences, can convert amino acid sequences\\ninto vectorized embeddings that capture important biological properties. We\\ndiscuss recent attempts to leverage PLMs to deliver very competitive\\nperformances in TCR-related tasks. Finally, we address the pressing need for\\nimproved interpretability in these often opaque models, proposing strategies to\\namplify their impact in the field.\",\"PeriodicalId\":501170,\"journal\":{\"name\":\"arXiv - QuanBio - Subcellular Processes\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Subcellular Processes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.16594\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Subcellular Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.16594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

免疫测序和实验技术的最新进展正在产生大量的 T 细胞受体(TCR)谱系数据,从而能够开发预测 TCR 结合特异性的模型。尽管 TCR 和表位的多样性给计算带来了挑战,但我们还是取得了重大进展。本文讨论了为这项任务开发的计算模型的演变过程,重点是机器学习方面的努力,包括早期的无监督聚类方法、有监督模型以及蛋白质语言模型(PLM)的最新应用。我们对每个类别中最突出的模型进行了严格评估,并讨论了当前面临的挑战,如缺乏对新表位的泛化、数据集偏差和模型验证设计中的偏差。此外,我们的论文还讨论了基于转换器的蛋白质模型在生物信息学中的变革性作用。这些模型在大量未标记的蛋白质序列集合上进行预训练,可以将氨基酸序列转换为能够捕捉重要生物特性的矢量化嵌入。我们讨论了最近在 TCR 相关任务中利用 PLM 提供极具竞争力性能的尝试。最后,我们探讨了在这些通常不透明的模型中提高可解释性的迫切需要,并提出了扩大其在该领域影响的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
T cell receptor binding prediction: A machine learning revolution
Recent advancements in immune sequencing and experimental techniques are generating extensive T cell receptor (TCR) repertoire data, enabling the development of models to predict TCR binding specificity. Despite the computational challenges due to the vast diversity of TCRs and epitopes, significant progress has been made. This paper discusses the evolution of the computational models developed for this task, with a focus on machine learning efforts, including the early unsupervised clustering approaches, supervised models, and the more recent applications of Protein Language Models (PLMs). We critically assess the most prominent models in each category, and discuss recurrent challenges, such as the lack of generalization to new epitopes, dataset biases, and biases in the validation design of the models. Furthermore, our paper discusses the transformative role of transformer-based protein models in bioinformatics. These models, pretrained on extensive collections of unlabeled protein sequences, can convert amino acid sequences into vectorized embeddings that capture important biological properties. We discuss recent attempts to leverage PLMs to deliver very competitive performances in TCR-related tasks. Finally, we address the pressing need for improved interpretability in these often opaque models, proposing strategies to amplify their impact in the field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信