在中文生物医学实体链接中利用双词汇编码器

IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Tzu-Mi Lin, Man-Chen Hung, Lung-Hao Lee
{"title":"在中文生物医学实体链接中利用双词汇编码器","authors":"Tzu-Mi Lin, Man-Chen Hung, Lung-Hao Lee","doi":"10.1145/3638555","DOIUrl":null,"url":null,"abstract":"<p>Entity linking is the task of assigning a unique identity to named entities mentioned in a text, a sort of word sense disambiguation that focuses on automatically determining a pre-defined sense for a target entity to be disambiguated. This study proposes the DGE (Dual Gloss Encoders) model for Chinese entity linking in the biomedical domain. We separately model a dual encoder architecture, comprising a context-aware gloss encoder and a lexical gloss encoder, for contextualized embedding representations. Dual gloss encoders are then jointly optimized to assign the nearest gloss with the highest score for target entity disambiguation. The experimental datasets consist of a total of 10,218 sentences that were manually annotated with glosses defined in the BabelNet 5.0 across 40 distinct biomedical entities. Experimental results show that the DGE model achieved an F1-score of 97.81, outperforming other existing methods. A series of model analyses indicate that the proposed approach is effective for Chinese biomedical entity linking.</p>","PeriodicalId":54312,"journal":{"name":"ACM Transactions on Asian and Low-Resource Language Information Processing","volume":"10 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leveraging Dual Gloss Encoders in Chinese Biomedical Entity Linking\",\"authors\":\"Tzu-Mi Lin, Man-Chen Hung, Lung-Hao Lee\",\"doi\":\"10.1145/3638555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Entity linking is the task of assigning a unique identity to named entities mentioned in a text, a sort of word sense disambiguation that focuses on automatically determining a pre-defined sense for a target entity to be disambiguated. This study proposes the DGE (Dual Gloss Encoders) model for Chinese entity linking in the biomedical domain. We separately model a dual encoder architecture, comprising a context-aware gloss encoder and a lexical gloss encoder, for contextualized embedding representations. Dual gloss encoders are then jointly optimized to assign the nearest gloss with the highest score for target entity disambiguation. The experimental datasets consist of a total of 10,218 sentences that were manually annotated with glosses defined in the BabelNet 5.0 across 40 distinct biomedical entities. Experimental results show that the DGE model achieved an F1-score of 97.81, outperforming other existing methods. A series of model analyses indicate that the proposed approach is effective for Chinese biomedical entity linking.</p>\",\"PeriodicalId\":54312,\"journal\":{\"name\":\"ACM Transactions on Asian and Low-Resource Language Information Processing\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Asian and Low-Resource Language Information Processing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3638555\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Asian and Low-Resource Language Information Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3638555","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

实体关联是为文本中提到的命名实体赋予唯一标识的任务,是一种词义消歧,主要是为待消歧的目标实体自动确定一个预定义。本研究针对生物医学领域的中文实体链接提出了 DGE(双词汇编码器)模型。我们分别建立了一个双编码器架构模型,其中包括一个上下文感知词汇编码器和一个词汇编码器,用于上下文嵌入表示。然后对双词汇编码器进行联合优化,为目标实体消歧分配得分最高的最近词汇。实验数据集由总共 10,218 个句子组成,这些句子由人工标注了 BabelNet 5.0 中定义的词汇,涉及 40 个不同的生物医学实体。实验结果表明,DGE 模型的 F1 分数达到 97.81,优于其他现有方法。一系列的模型分析表明,所提出的方法对中文生物医学实体链接非常有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Leveraging Dual Gloss Encoders in Chinese Biomedical Entity Linking

Entity linking is the task of assigning a unique identity to named entities mentioned in a text, a sort of word sense disambiguation that focuses on automatically determining a pre-defined sense for a target entity to be disambiguated. This study proposes the DGE (Dual Gloss Encoders) model for Chinese entity linking in the biomedical domain. We separately model a dual encoder architecture, comprising a context-aware gloss encoder and a lexical gloss encoder, for contextualized embedding representations. Dual gloss encoders are then jointly optimized to assign the nearest gloss with the highest score for target entity disambiguation. The experimental datasets consist of a total of 10,218 sentences that were manually annotated with glosses defined in the BabelNet 5.0 across 40 distinct biomedical entities. Experimental results show that the DGE model achieved an F1-score of 97.81, outperforming other existing methods. A series of model analyses indicate that the proposed approach is effective for Chinese biomedical entity linking.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.60
自引率
15.00%
发文量
241
期刊介绍: The ACM Transactions on Asian and Low-Resource Language Information Processing (TALLIP) publishes high quality original archival papers and technical notes in the areas of computation and processing of information in Asian languages, low-resource languages of Africa, Australasia, Oceania and the Americas, as well as related disciplines. The subject areas covered by TALLIP include, but are not limited to: -Computational Linguistics: including computational phonology, computational morphology, computational syntax (e.g. parsing), computational semantics, computational pragmatics, etc. -Linguistic Resources: including computational lexicography, terminology, electronic dictionaries, cross-lingual dictionaries, electronic thesauri, etc. -Hardware and software algorithms and tools for Asian or low-resource language processing, e.g., handwritten character recognition. -Information Understanding: including text understanding, speech understanding, character recognition, discourse processing, dialogue systems, etc. -Machine Translation involving Asian or low-resource languages. -Information Retrieval: including natural language processing (NLP) for concept-based indexing, natural language query interfaces, semantic relevance judgments, etc. -Information Extraction and Filtering: including automatic abstraction, user profiling, etc. -Speech processing: including text-to-speech synthesis and automatic speech recognition. -Multimedia Asian Information Processing: including speech, image, video, image/text translation, etc. -Cross-lingual information processing involving Asian or low-resource languages. -Papers that deal in theory, systems design, evaluation and applications in the aforesaid subjects are appropriate for TALLIP. Emphasis will be placed on the originality and the practical significance of the reported research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信