Nima Anari, Kuikui Liu, Shayan Oveis Gharan, Cynthia Vinzant
{"title":"对数凹多项式 II:高维行走和计算矩阵基的 FPRAS | 数学年鉴","authors":"Nima Anari, Kuikui Liu, Shayan Oveis Gharan, Cynthia Vinzant","doi":"10.4007/annals.2024.199.1.4","DOIUrl":null,"url":null,"abstract":"<p>We design an FPRAS to count the number of bases of any matroid given by an independent set oracle, and to estimate the partition function of the random cluster model of any matroid in the regime where $0\\lt q\\lt 1$. Consequently, we can sample random spanning forests in a graph and estimate the reliability polynomial of any matroid. We also prove the thirty year old conjecture of Mihail and Vazirani that the bases exchange graph of any matroid has edge expansion at least 1.</p>\n<p>Our algorithm and proof build on the recent results of Dinur, Kaufman, Mass and Oppenheim who show that a high-dimensional walk on a weighted simplicial complex mixes rapidly if for every link of the complex, the corresponding localized random walk on the 1-skeleton is a strong spectral expander. One of our key observations is that a weighted simplicial complex $X$ is a $0$-local spectral expander if and only if a naturally associated generating polynomial $p_{X}$ is strongly log-concave. More generally, to every pure simplicial complex $X$ with positive weights on its maximal faces, we can associate a multiaffine homogeneous polynomial $p_{X}$ such that the eigenvalues of the localized random walks on $X$ correspond to the eigenvalues of the Hessian of derivatives of $p_{X}$.</p>","PeriodicalId":8134,"journal":{"name":"Annals of Mathematics","volume":"32 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Log-concave polynomials II: High-dimensional walks and an FPRAS for counting bases of a matroid | Annals of Mathematics\",\"authors\":\"Nima Anari, Kuikui Liu, Shayan Oveis Gharan, Cynthia Vinzant\",\"doi\":\"10.4007/annals.2024.199.1.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We design an FPRAS to count the number of bases of any matroid given by an independent set oracle, and to estimate the partition function of the random cluster model of any matroid in the regime where $0\\\\lt q\\\\lt 1$. Consequently, we can sample random spanning forests in a graph and estimate the reliability polynomial of any matroid. We also prove the thirty year old conjecture of Mihail and Vazirani that the bases exchange graph of any matroid has edge expansion at least 1.</p>\\n<p>Our algorithm and proof build on the recent results of Dinur, Kaufman, Mass and Oppenheim who show that a high-dimensional walk on a weighted simplicial complex mixes rapidly if for every link of the complex, the corresponding localized random walk on the 1-skeleton is a strong spectral expander. One of our key observations is that a weighted simplicial complex $X$ is a $0$-local spectral expander if and only if a naturally associated generating polynomial $p_{X}$ is strongly log-concave. More generally, to every pure simplicial complex $X$ with positive weights on its maximal faces, we can associate a multiaffine homogeneous polynomial $p_{X}$ such that the eigenvalues of the localized random walks on $X$ correspond to the eigenvalues of the Hessian of derivatives of $p_{X}$.</p>\",\"PeriodicalId\":8134,\"journal\":{\"name\":\"Annals of Mathematics\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2023-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4007/annals.2024.199.1.4\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4007/annals.2024.199.1.4","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Log-concave polynomials II: High-dimensional walks and an FPRAS for counting bases of a matroid | Annals of Mathematics
We design an FPRAS to count the number of bases of any matroid given by an independent set oracle, and to estimate the partition function of the random cluster model of any matroid in the regime where $0\lt q\lt 1$. Consequently, we can sample random spanning forests in a graph and estimate the reliability polynomial of any matroid. We also prove the thirty year old conjecture of Mihail and Vazirani that the bases exchange graph of any matroid has edge expansion at least 1.
Our algorithm and proof build on the recent results of Dinur, Kaufman, Mass and Oppenheim who show that a high-dimensional walk on a weighted simplicial complex mixes rapidly if for every link of the complex, the corresponding localized random walk on the 1-skeleton is a strong spectral expander. One of our key observations is that a weighted simplicial complex $X$ is a $0$-local spectral expander if and only if a naturally associated generating polynomial $p_{X}$ is strongly log-concave. More generally, to every pure simplicial complex $X$ with positive weights on its maximal faces, we can associate a multiaffine homogeneous polynomial $p_{X}$ such that the eigenvalues of the localized random walks on $X$ correspond to the eigenvalues of the Hessian of derivatives of $p_{X}$.
期刊介绍:
The Annals of Mathematics is published bimonthly by the Department of Mathematics at Princeton University with the cooperation of the Institute for Advanced Study. Founded in 1884 by Ormond Stone of the University of Virginia, the journal was transferred in 1899 to Harvard University, and in 1911 to Princeton University. Since 1933, the Annals has been edited jointly by Princeton University and the Institute for Advanced Study.