双向映射的动机不变式 | 数学年鉴

IF 5.7 1区 数学 Q1 MATHEMATICS
Hsueh-Yung Lin, Evgeny Shinder
{"title":"双向映射的动机不变式 | 数学年鉴","authors":"Hsueh-Yung Lin, Evgeny Shinder","doi":"10.4007/annals.2024.199.1.6","DOIUrl":null,"url":null,"abstract":"<p>We construct invariants of birational maps with values in the Kontsevich–Tschinkel group and in the truncated Grothendieck groups of varieties. These invariants are morphisms of groupoids and are well-suited to investigating the structure of the Grothendieck ring and L-equivalence. Building on known constructions of L-equivalence, we prove new unexpected results about Cremona groups.</p>","PeriodicalId":8134,"journal":{"name":"Annals of Mathematics","volume":"117 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Motivic invariants of birational maps | Annals of Mathematics\",\"authors\":\"Hsueh-Yung Lin, Evgeny Shinder\",\"doi\":\"10.4007/annals.2024.199.1.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We construct invariants of birational maps with values in the Kontsevich–Tschinkel group and in the truncated Grothendieck groups of varieties. These invariants are morphisms of groupoids and are well-suited to investigating the structure of the Grothendieck ring and L-equivalence. Building on known constructions of L-equivalence, we prove new unexpected results about Cremona groups.</p>\",\"PeriodicalId\":8134,\"journal\":{\"name\":\"Annals of Mathematics\",\"volume\":\"117 1\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2023-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4007/annals.2024.199.1.6\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4007/annals.2024.199.1.6","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们构建了在 Kontsevich-Tschinkel 群和截断格罗thendieck 群中具有值的双向映射不变式。这些不变式是群的变形,非常适合研究格罗内狄克环的结构和 L-等价性。在已知的 L 等价性构造的基础上,我们证明了关于克雷莫纳群的意想不到的新结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Motivic invariants of birational maps | Annals of Mathematics

We construct invariants of birational maps with values in the Kontsevich–Tschinkel group and in the truncated Grothendieck groups of varieties. These invariants are morphisms of groupoids and are well-suited to investigating the structure of the Grothendieck ring and L-equivalence. Building on known constructions of L-equivalence, we prove new unexpected results about Cremona groups.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Mathematics
Annals of Mathematics 数学-数学
CiteScore
9.10
自引率
2.00%
发文量
29
审稿时长
12 months
期刊介绍: The Annals of Mathematics is published bimonthly by the Department of Mathematics at Princeton University with the cooperation of the Institute for Advanced Study. Founded in 1884 by Ormond Stone of the University of Virginia, the journal was transferred in 1899 to Harvard University, and in 1911 to Princeton University. Since 1933, the Annals has been edited jointly by Princeton University and the Institute for Advanced Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信