{"title":"Heracleum sosnowskyi Manden.和 Heracleum mantegazzianum Sommier & Levier 的种群面积增长率模型","authors":"I. V. Dalke, I. F. Chadin","doi":"10.1134/s2075111723040045","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>On the basis of developed individual-based model and empirical data the importance of anemochory for the dispersal of giant hogweed mericarpia over long distances (up to 55 m from the parent plant) was proved. The use of cellular automate for modelling of the plant population area increase allowed to reveal the influence of weather condition, number and spatial distribution of hogweed plants in the period of the beginning of introduction on the rate of invasion. Verification of the results of the cellular automaton work based on satellite images and field observations showed a significant level of compliance of theoretical calculations and observed results. The logistic functions parameters describing the change in the area of giant invasive hogweed stands were determined. A retrospective analysis of satellite images of model plots, starting from the 1990s of the 20th century, showed an annual increase in the area of hogweed populations by 20% in the exponential population growth phase. A significant variability in the rate of invasion (from 5 to 70% per year) depended on the initial conditions and stage of invasion, usage modes and ecological capacity of the available sites.</p>","PeriodicalId":44218,"journal":{"name":"Russian Journal of Biological Invasions","volume":"77 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modelling of Heracleum sosnowskyi Manden. and Heracleum mantegazzianum Sommier & Levier Population Area Increase Rate\",\"authors\":\"I. V. Dalke, I. F. Chadin\",\"doi\":\"10.1134/s2075111723040045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>On the basis of developed individual-based model and empirical data the importance of anemochory for the dispersal of giant hogweed mericarpia over long distances (up to 55 m from the parent plant) was proved. The use of cellular automate for modelling of the plant population area increase allowed to reveal the influence of weather condition, number and spatial distribution of hogweed plants in the period of the beginning of introduction on the rate of invasion. Verification of the results of the cellular automaton work based on satellite images and field observations showed a significant level of compliance of theoretical calculations and observed results. The logistic functions parameters describing the change in the area of giant invasive hogweed stands were determined. A retrospective analysis of satellite images of model plots, starting from the 1990s of the 20th century, showed an annual increase in the area of hogweed populations by 20% in the exponential population growth phase. A significant variability in the rate of invasion (from 5 to 70% per year) depended on the initial conditions and stage of invasion, usage modes and ecological capacity of the available sites.</p>\",\"PeriodicalId\":44218,\"journal\":{\"name\":\"Russian Journal of Biological Invasions\",\"volume\":\"77 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Biological Invasions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1134/s2075111723040045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Biological Invasions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1134/s2075111723040045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECOLOGY","Score":null,"Total":0}
Modelling of Heracleum sosnowskyi Manden. and Heracleum mantegazzianum Sommier & Levier Population Area Increase Rate
Abstract
On the basis of developed individual-based model and empirical data the importance of anemochory for the dispersal of giant hogweed mericarpia over long distances (up to 55 m from the parent plant) was proved. The use of cellular automate for modelling of the plant population area increase allowed to reveal the influence of weather condition, number and spatial distribution of hogweed plants in the period of the beginning of introduction on the rate of invasion. Verification of the results of the cellular automaton work based on satellite images and field observations showed a significant level of compliance of theoretical calculations and observed results. The logistic functions parameters describing the change in the area of giant invasive hogweed stands were determined. A retrospective analysis of satellite images of model plots, starting from the 1990s of the 20th century, showed an annual increase in the area of hogweed populations by 20% in the exponential population growth phase. A significant variability in the rate of invasion (from 5 to 70% per year) depended on the initial conditions and stage of invasion, usage modes and ecological capacity of the available sites.
期刊介绍:
Russian Journal of Biological Invasions publishes original scientific papers dealing with biological invasions of alien species in both terrestrial and aquatic ecosystems and covers the following subjects:description of invasion process (theory, modeling, results of observations and experiments): invasion corridors, invasion vectors, invader species adaptations, vulnerability of aboriginal ecosystems;monitoring of invasion process (reports about findings of organisms out of the limits of natural range, propagule pressure assessment, settling dynamics, rates of naturalization);invasion risk assessment; genetic, evolutional, and ecological consequences of biological invasions of alien species; methods, means of hoarding, processing and presentation of applied research data (new developments, modeling, research results, databases) with factual and geoinformation system applications;use of the results of biological invasion research (methods and new basic results) under the study of marine, fresh-water and terrestrial species, populations, communities and ecosystems; control, rational use and eradication of the harmful alien species..