{"title":"DiffuRec:顺序推荐的扩散模型","authors":"Zihao Li, Aixin Sun, Chenliang Li","doi":"10.1145/3631116","DOIUrl":null,"url":null,"abstract":"<p>Mainstream solutions to sequential recommendation represent items with fixed vectors. These vectors have limited capability in capturing items’ latent aspects and users’ diverse preferences. As a new generative paradigm, <i>diffusion models</i> have achieved excellent performance in areas like computer vision and natural language processing. To our understanding, its unique merit in representation generation well fits the problem setting of sequential recommendation. In this article, we make the very first attempt to adapt the diffusion model to sequential recommendation and propose <span>DiffuRec</span> for item representation construction and uncertainty injection. Rather than modeling item representations as fixed vectors, we represent them as distributions in <span>DiffuRec</span>, which reflect a user’s multiple interests and an item’s various aspects adaptively. In the diffusion phase, <span>DiffuRec</span> corrupts the target item embedding into a Gaussian distribution via noise adding, which is further applied for sequential item distribution representation generation and uncertainty injection. Afterward, the item representation is fed into an approximator for target item representation reconstruction. In the reverse phase, based on a user’s historical interaction behaviors, we reverse a Gaussian noise into the target item representation, then apply a rounding operation for target item prediction. Experiments over four datasets show that <span>DiffuRec</span> outperforms strong baselines by a large margin.<sup>1</sup></p>","PeriodicalId":50936,"journal":{"name":"ACM Transactions on Information Systems","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DiffuRec: A Diffusion Model for Sequential Recommendation\",\"authors\":\"Zihao Li, Aixin Sun, Chenliang Li\",\"doi\":\"10.1145/3631116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Mainstream solutions to sequential recommendation represent items with fixed vectors. These vectors have limited capability in capturing items’ latent aspects and users’ diverse preferences. As a new generative paradigm, <i>diffusion models</i> have achieved excellent performance in areas like computer vision and natural language processing. To our understanding, its unique merit in representation generation well fits the problem setting of sequential recommendation. In this article, we make the very first attempt to adapt the diffusion model to sequential recommendation and propose <span>DiffuRec</span> for item representation construction and uncertainty injection. Rather than modeling item representations as fixed vectors, we represent them as distributions in <span>DiffuRec</span>, which reflect a user’s multiple interests and an item’s various aspects adaptively. In the diffusion phase, <span>DiffuRec</span> corrupts the target item embedding into a Gaussian distribution via noise adding, which is further applied for sequential item distribution representation generation and uncertainty injection. Afterward, the item representation is fed into an approximator for target item representation reconstruction. In the reverse phase, based on a user’s historical interaction behaviors, we reverse a Gaussian noise into the target item representation, then apply a rounding operation for target item prediction. Experiments over four datasets show that <span>DiffuRec</span> outperforms strong baselines by a large margin.<sup>1</sup></p>\",\"PeriodicalId\":50936,\"journal\":{\"name\":\"ACM Transactions on Information Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2023-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Information Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3631116\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3631116","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
DiffuRec: A Diffusion Model for Sequential Recommendation
Mainstream solutions to sequential recommendation represent items with fixed vectors. These vectors have limited capability in capturing items’ latent aspects and users’ diverse preferences. As a new generative paradigm, diffusion models have achieved excellent performance in areas like computer vision and natural language processing. To our understanding, its unique merit in representation generation well fits the problem setting of sequential recommendation. In this article, we make the very first attempt to adapt the diffusion model to sequential recommendation and propose DiffuRec for item representation construction and uncertainty injection. Rather than modeling item representations as fixed vectors, we represent them as distributions in DiffuRec, which reflect a user’s multiple interests and an item’s various aspects adaptively. In the diffusion phase, DiffuRec corrupts the target item embedding into a Gaussian distribution via noise adding, which is further applied for sequential item distribution representation generation and uncertainty injection. Afterward, the item representation is fed into an approximator for target item representation reconstruction. In the reverse phase, based on a user’s historical interaction behaviors, we reverse a Gaussian noise into the target item representation, then apply a rounding operation for target item prediction. Experiments over four datasets show that DiffuRec outperforms strong baselines by a large margin.1
期刊介绍:
The ACM Transactions on Information Systems (TOIS) publishes papers on information retrieval (such as search engines, recommender systems) that contain:
new principled information retrieval models or algorithms with sound empirical validation;
observational, experimental and/or theoretical studies yielding new insights into information retrieval or information seeking;
accounts of applications of existing information retrieval techniques that shed light on the strengths and weaknesses of the techniques;
formalization of new information retrieval or information seeking tasks and of methods for evaluating the performance on those tasks;
development of content (text, image, speech, video, etc) analysis methods to support information retrieval and information seeking;
development of computational models of user information preferences and interaction behaviors;
creation and analysis of evaluation methodologies for information retrieval and information seeking; or
surveys of existing work that propose a significant synthesis.
The information retrieval scope of ACM Transactions on Information Systems (TOIS) appeals to industry practitioners for its wealth of creative ideas, and to academic researchers for its descriptions of their colleagues'' work.