{"title":"具有平行无扭的洛伦兹连接","authors":"Igor Ernst, Anton S. Galaev","doi":"10.1007/s13348-023-00430-8","DOIUrl":null,"url":null,"abstract":"<p>We describe Lorentzian manifolds that admit metric connections with parallel torsion having zero twistorial component and non-zero vectorial component. We also describe Lorentzian manifolds admitting metric connections with closed parallel skew-symmetric torsion.</p>","PeriodicalId":50993,"journal":{"name":"Collectanea Mathematica","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lorentzian connections with parallel twistor-free torsion\",\"authors\":\"Igor Ernst, Anton S. Galaev\",\"doi\":\"10.1007/s13348-023-00430-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We describe Lorentzian manifolds that admit metric connections with parallel torsion having zero twistorial component and non-zero vectorial component. We also describe Lorentzian manifolds admitting metric connections with closed parallel skew-symmetric torsion.</p>\",\"PeriodicalId\":50993,\"journal\":{\"name\":\"Collectanea Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Collectanea Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13348-023-00430-8\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Collectanea Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13348-023-00430-8","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Lorentzian connections with parallel twistor-free torsion
We describe Lorentzian manifolds that admit metric connections with parallel torsion having zero twistorial component and non-zero vectorial component. We also describe Lorentzian manifolds admitting metric connections with closed parallel skew-symmetric torsion.
期刊介绍:
Collectanea Mathematica publishes original research peer reviewed papers of high quality in all fields of pure and applied mathematics. It is an international journal of the University of Barcelona and the oldest mathematical journal in Spain. It was founded in 1948 by José M. Orts. Previously self-published by the Institut de Matemàtica (IMUB) of the Universitat de Barcelona, as of 2011 it is published by Springer.