非简单李群同质空间上标准爱因斯坦度量的稳定性

IF 0.7 2区 数学 Q2 MATHEMATICS
Valeria Gutiérrez, Jorge Lauret
{"title":"非简单李群同质空间上标准爱因斯坦度量的稳定性","authors":"Valeria Gutiérrez, Jorge Lauret","doi":"10.1007/s13348-023-00431-7","DOIUrl":null,"url":null,"abstract":"<p>The classification of compact homogeneous spaces of the form <span>\\(M=G/K\\)</span>, where <i>G</i> is a non-simple Lie group, such that the standard metric is Einstein is still open. The only known examples are 4 infinite families and 3 isolated spaces found by Nikonorov and Rodionov in the 90 s. In this paper, we prove that most of these standard Einstein metrics are unstable as critical points of the scalar curvature functional on the manifold of all unit volume <i>G</i>-invariant metrics on <i>M</i>, providing a lower bound for the coindex in the case of Ledger–Obata spaces. On the other hand, examples of stable (in particular, local maxima) invariant Einstein metrics on certain homogeneous spaces of non-simple Lie groups are also given.\n</p>","PeriodicalId":50993,"journal":{"name":"Collectanea Mathematica","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability of standard Einstein metrics on homogeneous spaces of non-simple Lie groups\",\"authors\":\"Valeria Gutiérrez, Jorge Lauret\",\"doi\":\"10.1007/s13348-023-00431-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The classification of compact homogeneous spaces of the form <span>\\\\(M=G/K\\\\)</span>, where <i>G</i> is a non-simple Lie group, such that the standard metric is Einstein is still open. The only known examples are 4 infinite families and 3 isolated spaces found by Nikonorov and Rodionov in the 90 s. In this paper, we prove that most of these standard Einstein metrics are unstable as critical points of the scalar curvature functional on the manifold of all unit volume <i>G</i>-invariant metrics on <i>M</i>, providing a lower bound for the coindex in the case of Ledger–Obata spaces. On the other hand, examples of stable (in particular, local maxima) invariant Einstein metrics on certain homogeneous spaces of non-simple Lie groups are also given.\\n</p>\",\"PeriodicalId\":50993,\"journal\":{\"name\":\"Collectanea Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Collectanea Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13348-023-00431-7\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Collectanea Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13348-023-00431-7","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于形式为 \(M=G/K/)(其中 G 为非简单李群)、标准度量为爱因斯坦的紧凑均质空间的分类,目前仍是一个未知数。在本文中,我们证明了这些标准爱因斯坦度量中的大多数作为 M 上所有单位体积 G 不变度量流形上的标量曲率函数临界点是不稳定的,并提供了莱杰-奥巴塔空间情况下的协同指数下限。另一方面,还给出了非简单李群的某些同质空间上稳定(特别是局部最大值)不变的爱因斯坦度量的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability of standard Einstein metrics on homogeneous spaces of non-simple Lie groups

The classification of compact homogeneous spaces of the form \(M=G/K\), where G is a non-simple Lie group, such that the standard metric is Einstein is still open. The only known examples are 4 infinite families and 3 isolated spaces found by Nikonorov and Rodionov in the 90 s. In this paper, we prove that most of these standard Einstein metrics are unstable as critical points of the scalar curvature functional on the manifold of all unit volume G-invariant metrics on M, providing a lower bound for the coindex in the case of Ledger–Obata spaces. On the other hand, examples of stable (in particular, local maxima) invariant Einstein metrics on certain homogeneous spaces of non-simple Lie groups are also given.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Collectanea Mathematica
Collectanea Mathematica 数学-数学
CiteScore
2.70
自引率
9.10%
发文量
36
审稿时长
>12 weeks
期刊介绍: Collectanea Mathematica publishes original research peer reviewed papers of high quality in all fields of pure and applied mathematics. It is an international journal of the University of Barcelona and the oldest mathematical journal in Spain. It was founded in 1948 by José M. Orts. Previously self-published by the Institut de Matemàtica (IMUB) of the Universitat de Barcelona, as of 2011 it is published by Springer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信