{"title":"对有缺失应答的量化治疗效果进行多重稳健估计","authors":"","doi":"10.1007/s40304-023-00380-4","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Causal inference and missing data have attracted significant research interests in recent years, while the current literature usually focuses on only one of these two issues. In this paper, we develop two multiply robust methods to estimate the quantile treatment effect (QTE), in the context of missing data. Compared to the commonly used average treatment effect, QTE provides a more complete picture of the difference between the treatment and control groups. The first one is based on inverse probability weighting, the resulting QTE estimator is root-<em>n</em> consistent and asymptotic normal, as long as the class of candidate models of propensity scores contains the correct model and so does that for the probability of being observed. The second one is based on augmented inverse probability weighting, which further relaxes the restriction on the probability of being observed. Simulation studies are conducted to investigate the performance of the proposed method, and the motivated CHARLS data are analyzed, exhibiting different treatment effects at various quantile levels.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiply Robust Estimation of Quantile Treatment Effects with Missing Responses\",\"authors\":\"\",\"doi\":\"10.1007/s40304-023-00380-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>Causal inference and missing data have attracted significant research interests in recent years, while the current literature usually focuses on only one of these two issues. In this paper, we develop two multiply robust methods to estimate the quantile treatment effect (QTE), in the context of missing data. Compared to the commonly used average treatment effect, QTE provides a more complete picture of the difference between the treatment and control groups. The first one is based on inverse probability weighting, the resulting QTE estimator is root-<em>n</em> consistent and asymptotic normal, as long as the class of candidate models of propensity scores contains the correct model and so does that for the probability of being observed. The second one is based on augmented inverse probability weighting, which further relaxes the restriction on the probability of being observed. Simulation studies are conducted to investigate the performance of the proposed method, and the motivated CHARLS data are analyzed, exhibiting different treatment effects at various quantile levels.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s40304-023-00380-4\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40304-023-00380-4","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
摘要 近年来,因果推理和缺失数据引起了广泛的研究兴趣,而目前的文献通常只关注这两个问题中的一个。在本文中,我们开发了两种多稳健方法来估计缺失数据背景下的量化治疗效果(QTE)。与常用的平均治疗效果相比,QTE 能更全面地反映治疗组和对照组之间的差异。第一种方法基于反概率加权,只要倾向分数的候选模型包含正确的模型,那么所得到的 QTE 估计器就是根 n 一致和渐近正态的。第二种方法基于增强反概率加权,进一步放宽了对被观察概率的限制。我们进行了模拟研究,以调查所提方法的性能,并分析了 CHARLS 数据,这些数据在不同的量化水平上表现出不同的治疗效果。
Multiply Robust Estimation of Quantile Treatment Effects with Missing Responses
Abstract
Causal inference and missing data have attracted significant research interests in recent years, while the current literature usually focuses on only one of these two issues. In this paper, we develop two multiply robust methods to estimate the quantile treatment effect (QTE), in the context of missing data. Compared to the commonly used average treatment effect, QTE provides a more complete picture of the difference between the treatment and control groups. The first one is based on inverse probability weighting, the resulting QTE estimator is root-n consistent and asymptotic normal, as long as the class of candidate models of propensity scores contains the correct model and so does that for the probability of being observed. The second one is based on augmented inverse probability weighting, which further relaxes the restriction on the probability of being observed. Simulation studies are conducted to investigate the performance of the proposed method, and the motivated CHARLS data are analyzed, exhibiting different treatment effects at various quantile levels.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.