静止 Kdv 系统的 Stäckel 表示法

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Maciej Błaszak, Błażej M. Szablikowski, Krzysztof Marciniak
{"title":"静止 Kdv 系统的 Stäckel 表示法","authors":"Maciej Błaszak, Błażej M. Szablikowski, Krzysztof Marciniak","doi":"10.1016/s0034-4877(23)00083-6","DOIUrl":null,"url":null,"abstract":"<p>In this article we study Stäckel representations of stationary KdV systems<span>. Using Lax formalism we prove that these systems have two different representations as separable Stäckel systems of Benenti type, related with different foliations of the stationary manifold. We do it by constructing an explicit transformation between the jet coordinates of stationary KdV systems and separation variables of the corresponding Benenti systems for arbitrary number of degrees of freedom. Moreover, on the stationary manifold, we present the explicit form of Miura map between both representations of stationary KdV systems, which also yields their bi-Hamiltonian formulation.</span></p>","PeriodicalId":49630,"journal":{"name":"Reports on Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stäckel representations of stationary Kdv systems\",\"authors\":\"Maciej Błaszak, Błażej M. Szablikowski, Krzysztof Marciniak\",\"doi\":\"10.1016/s0034-4877(23)00083-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article we study Stäckel representations of stationary KdV systems<span>. Using Lax formalism we prove that these systems have two different representations as separable Stäckel systems of Benenti type, related with different foliations of the stationary manifold. We do it by constructing an explicit transformation between the jet coordinates of stationary KdV systems and separation variables of the corresponding Benenti systems for arbitrary number of degrees of freedom. Moreover, on the stationary manifold, we present the explicit form of Miura map between both representations of stationary KdV systems, which also yields their bi-Hamiltonian formulation.</span></p>\",\"PeriodicalId\":49630,\"journal\":{\"name\":\"Reports on Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reports on Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1016/s0034-4877(23)00083-6\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports on Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1016/s0034-4877(23)00083-6","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

在这篇文章中,我们研究了静止 KdV 系统的 Stäckel 表示。利用拉克斯形式主义,我们证明了这些系统作为贝南蒂类型的可分离斯塔克尔系统有两种不同的表示,它们与静止流形的不同叶形有关。在任意自由度数下,我们通过在静止 KdV 系统的射流坐标和相应贝南蒂系统的分离变量之间构建明确的变换来实现这一点。此外,在静止流形上,我们提出了静止 KdV 系统两种表征之间的三浦映射(Miura map)的明确形式,这也产生了它们的双哈密顿表述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stäckel representations of stationary Kdv systems

In this article we study Stäckel representations of stationary KdV systems. Using Lax formalism we prove that these systems have two different representations as separable Stäckel systems of Benenti type, related with different foliations of the stationary manifold. We do it by constructing an explicit transformation between the jet coordinates of stationary KdV systems and separation variables of the corresponding Benenti systems for arbitrary number of degrees of freedom. Moreover, on the stationary manifold, we present the explicit form of Miura map between both representations of stationary KdV systems, which also yields their bi-Hamiltonian formulation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reports on Mathematical Physics
Reports on Mathematical Physics 物理-物理:数学物理
CiteScore
1.80
自引率
0.00%
发文量
40
审稿时长
6 months
期刊介绍: Reports on Mathematical Physics publish papers in theoretical physics which present a rigorous mathematical approach to problems of quantum and classical mechanics and field theories, relativity and gravitation, statistical physics, thermodynamics, mathematical foundations of physical theories, etc. Preferred are papers using modern methods of functional analysis, probability theory, differential geometry, algebra and mathematical logic. Papers without direct connection with physics will not be accepted. Manuscripts should be concise, but possibly complete in presentation and discussion, to be comprehensible not only for mathematicians, but also for mathematically oriented theoretical physicists. All papers should describe original work and be written in English.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信