结群、Qandle 扩展和有序性

IF 0.5 4区 数学 Q3 MATHEMATICS
Idrissa Ba, Mohamed Elhamdadi
{"title":"结群、Qandle 扩展和有序性","authors":"Idrissa Ba, Mohamed Elhamdadi","doi":"10.1007/s10711-023-00876-x","DOIUrl":null,"url":null,"abstract":"<p>This paper gives a new way of characterizing L-space 3-manifolds by using orderability of quandles. Hence, this answers a question of Clay et al. (Question 1.1 of Can Math Bull 59(3):472–482, 2016). We also investigate both the orderability and circular orderability of dynamical extensions of orderable quandles. We give conditions under which the conjugation quandle on a group, as an extension of the conjugation of a bi-orderable group by the conjugation of a right orderable group, is right orderable. We also study the right circular orderability of link quandles. We prove that the <i>n</i>-quandle <span>\\(Q_n(L)\\)</span> of the link quandle of a link <i>L</i> in the 3-sphere is not right circularly orderable and hence it is not right orderable. But on the other hand, we show that there are infinitely many links for which the <i>p</i>-enveloping group of the link quandle is right circularly orderable for any prime integer <i>p</i>.</p>","PeriodicalId":55103,"journal":{"name":"Geometriae Dedicata","volume":"25 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Knot groups, quandle extensions and orderability\",\"authors\":\"Idrissa Ba, Mohamed Elhamdadi\",\"doi\":\"10.1007/s10711-023-00876-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper gives a new way of characterizing L-space 3-manifolds by using orderability of quandles. Hence, this answers a question of Clay et al. (Question 1.1 of Can Math Bull 59(3):472–482, 2016). We also investigate both the orderability and circular orderability of dynamical extensions of orderable quandles. We give conditions under which the conjugation quandle on a group, as an extension of the conjugation of a bi-orderable group by the conjugation of a right orderable group, is right orderable. We also study the right circular orderability of link quandles. We prove that the <i>n</i>-quandle <span>\\\\(Q_n(L)\\\\)</span> of the link quandle of a link <i>L</i> in the 3-sphere is not right circularly orderable and hence it is not right orderable. But on the other hand, we show that there are infinitely many links for which the <i>p</i>-enveloping group of the link quandle is right circularly orderable for any prime integer <i>p</i>.</p>\",\"PeriodicalId\":55103,\"journal\":{\"name\":\"Geometriae Dedicata\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometriae Dedicata\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10711-023-00876-x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometriae Dedicata","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10711-023-00876-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了一种利用阶数的有序性来表征 L 空间 3-manifolds(3-manifolds)的新方法。因此,这回答了克莱等人的一个问题(Can Math Bull 59(3):472-482, 2016 问题 1.1)。我们还研究了可排序阶元的动态扩展的可排序性和循环可排序性。我们给出了群上的共轭簇作为双有序群的共轭簇由右有序群的共轭簇扩展是右有序的条件。我们还研究了链接簇的右循环可排序性。我们证明了 3 球中链路 L 的链路 quandle 的 n-quandle (Q_n(L)\)不是右循环可排序的,因此它不是右可排序的。但另一方面,我们证明了对于任意素整数 p,有无限多的链接的链接 quandle 的 p-enveloping group 是右旋可排序的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Knot groups, quandle extensions and orderability

This paper gives a new way of characterizing L-space 3-manifolds by using orderability of quandles. Hence, this answers a question of Clay et al. (Question 1.1 of Can Math Bull 59(3):472–482, 2016). We also investigate both the orderability and circular orderability of dynamical extensions of orderable quandles. We give conditions under which the conjugation quandle on a group, as an extension of the conjugation of a bi-orderable group by the conjugation of a right orderable group, is right orderable. We also study the right circular orderability of link quandles. We prove that the n-quandle \(Q_n(L)\) of the link quandle of a link L in the 3-sphere is not right circularly orderable and hence it is not right orderable. But on the other hand, we show that there are infinitely many links for which the p-enveloping group of the link quandle is right circularly orderable for any prime integer p.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geometriae Dedicata
Geometriae Dedicata 数学-数学
CiteScore
0.90
自引率
0.00%
发文量
78
审稿时长
4-8 weeks
期刊介绍: Geometriae Dedicata concentrates on geometry and its relationship to topology, group theory and the theory of dynamical systems. Geometriae Dedicata aims to be a vehicle for excellent publications in geometry and related areas. Features of the journal will include: A fast turn-around time for articles. Special issues centered on specific topics. All submitted papers should include some explanation of the context of the main results. Geometriae Dedicata was founded in 1972 on the initiative of Hans Freudenthal in Utrecht, the Netherlands, who viewed geometry as a method rather than as a field. The present Board of Editors tries to continue in this spirit. The steady growth of the journal since its foundation is witness to the validity of the founder''s vision and to the success of the Editors'' mission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信