{"title":"带洞域上的磁性诺依曼拉普拉卡方","authors":"Diana Barseghyan, Baruch Schneider, Swanhild Bernstein","doi":"10.1016/s0034-4877(23)00079-4","DOIUrl":null,"url":null,"abstract":"<p>In this article, we study the magnetic Neumann Laplacian on a domain with a small hole. Our attention is focused on the description of holes, which do not change the spectrum drastically. Moreover, we show that the spectrum of the magnetic Neumann Laplacian converges in the sense of the Hausdorff distance to the spectrum of the original operator defined on the unperturbed domain.</p>","PeriodicalId":49630,"journal":{"name":"Reports on Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetic Neumann Laplacian on a domain with a hole\",\"authors\":\"Diana Barseghyan, Baruch Schneider, Swanhild Bernstein\",\"doi\":\"10.1016/s0034-4877(23)00079-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article, we study the magnetic Neumann Laplacian on a domain with a small hole. Our attention is focused on the description of holes, which do not change the spectrum drastically. Moreover, we show that the spectrum of the magnetic Neumann Laplacian converges in the sense of the Hausdorff distance to the spectrum of the original operator defined on the unperturbed domain.</p>\",\"PeriodicalId\":49630,\"journal\":{\"name\":\"Reports on Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reports on Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1016/s0034-4877(23)00079-4\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports on Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1016/s0034-4877(23)00079-4","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
Magnetic Neumann Laplacian on a domain with a hole
In this article, we study the magnetic Neumann Laplacian on a domain with a small hole. Our attention is focused on the description of holes, which do not change the spectrum drastically. Moreover, we show that the spectrum of the magnetic Neumann Laplacian converges in the sense of the Hausdorff distance to the spectrum of the original operator defined on the unperturbed domain.
期刊介绍:
Reports on Mathematical Physics publish papers in theoretical physics which present a rigorous mathematical approach to problems of quantum and classical mechanics and field theories, relativity and gravitation, statistical physics, thermodynamics, mathematical foundations of physical theories, etc. Preferred are papers using modern methods of functional analysis, probability theory, differential geometry, algebra and mathematical logic. Papers without direct connection with physics will not be accepted. Manuscripts should be concise, but possibly complete in presentation and discussion, to be comprehensible not only for mathematicians, but also for mathematically oriented theoretical physicists. All papers should describe original work and be written in English.