{"title":"非紧密因果对称空间中的模块大地线和楔域","authors":"Vincenzo Morinelli, Karl-Hermann Neeb, Gestur Ólafsson","doi":"10.1007/s10455-023-09937-6","DOIUrl":null,"url":null,"abstract":"<div><p>We continue our investigation of the interplay between causal structures on symmetric spaces and geometric aspects of Algebraic Quantum Field Theory. We adopt the perspective that the geometric implementation of the modular group is given by the flow generated by an Euler element of the Lie algebra (an element defining a 3-grading). Since any Euler element of a semisimple Lie algebra specifies a canonical non-compactly causal symmetric space <span>\\(M = G/H\\)</span>, we turn in this paper to the geometry of this flow. Our main results concern the positivity region <i>W</i> of the flow (the corresponding wedge region): If <i>G</i> has trivial center, then <i>W</i> is connected, it coincides with the so-called observer domain, specified by a trajectory of the modular flow which at the same time is a causal geodesic. It can also be characterized in terms of a geometric KMS condition, and it has a natural structure of an equivariant fiber bundle over a Riemannian symmetric space that exhibits it as a real form of the crown domain of <i>G</i>/<i>K</i>. Among the tools that we need for these results are two observations of independent interest: a polar decomposition of the positivity domain and a convexity theorem for <i>G</i>-translates of open <i>H</i>-orbits in the minimal flag manifold specified by the 3-grading.\n</p></div>","PeriodicalId":8268,"journal":{"name":"Annals of Global Analysis and Geometry","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10455-023-09937-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Modular geodesics and wedge domains in non-compactly causal symmetric spaces\",\"authors\":\"Vincenzo Morinelli, Karl-Hermann Neeb, Gestur Ólafsson\",\"doi\":\"10.1007/s10455-023-09937-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We continue our investigation of the interplay between causal structures on symmetric spaces and geometric aspects of Algebraic Quantum Field Theory. We adopt the perspective that the geometric implementation of the modular group is given by the flow generated by an Euler element of the Lie algebra (an element defining a 3-grading). Since any Euler element of a semisimple Lie algebra specifies a canonical non-compactly causal symmetric space <span>\\\\(M = G/H\\\\)</span>, we turn in this paper to the geometry of this flow. Our main results concern the positivity region <i>W</i> of the flow (the corresponding wedge region): If <i>G</i> has trivial center, then <i>W</i> is connected, it coincides with the so-called observer domain, specified by a trajectory of the modular flow which at the same time is a causal geodesic. It can also be characterized in terms of a geometric KMS condition, and it has a natural structure of an equivariant fiber bundle over a Riemannian symmetric space that exhibits it as a real form of the crown domain of <i>G</i>/<i>K</i>. Among the tools that we need for these results are two observations of independent interest: a polar decomposition of the positivity domain and a convexity theorem for <i>G</i>-translates of open <i>H</i>-orbits in the minimal flag manifold specified by the 3-grading.\\n</p></div>\",\"PeriodicalId\":8268,\"journal\":{\"name\":\"Annals of Global Analysis and Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10455-023-09937-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Global Analysis and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10455-023-09937-6\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Global Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-023-09937-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们继续研究对称空间上的因果结构与代数量子场论的几何方面之间的相互作用。我们采用的观点是,模数群的几何实现是由一个欧拉元素(定义 3 级的元素)所产生的流给出的。由于半简单李代数的任何欧拉元都指定了一个典型的非紧凑因果对称空间 \(M=G/H\),我们在本文中将转向这个流的几何。我们的主要结果涉及流的正区域 W(相应的楔形区域):如果 G 有微分中心,那么 W 是连通的,它与所谓的观察者域重合,由模态流的轨迹指定,而模态流的轨迹同时又是因果大地线。它还可以用几何 KMS 条件来表征,并且具有在黎曼对称空间上的等变纤维束的自然结构,将其展示为 G/K 冠域的实形式。在这些结果所需的工具中,有两个是我们感兴趣的:一个是正域的极性分解,另一个是由 3 级指定的最小旗流形中开放 H 轨道的 G 变换的凸性定理。
Modular geodesics and wedge domains in non-compactly causal symmetric spaces
We continue our investigation of the interplay between causal structures on symmetric spaces and geometric aspects of Algebraic Quantum Field Theory. We adopt the perspective that the geometric implementation of the modular group is given by the flow generated by an Euler element of the Lie algebra (an element defining a 3-grading). Since any Euler element of a semisimple Lie algebra specifies a canonical non-compactly causal symmetric space \(M = G/H\), we turn in this paper to the geometry of this flow. Our main results concern the positivity region W of the flow (the corresponding wedge region): If G has trivial center, then W is connected, it coincides with the so-called observer domain, specified by a trajectory of the modular flow which at the same time is a causal geodesic. It can also be characterized in terms of a geometric KMS condition, and it has a natural structure of an equivariant fiber bundle over a Riemannian symmetric space that exhibits it as a real form of the crown domain of G/K. Among the tools that we need for these results are two observations of independent interest: a polar decomposition of the positivity domain and a convexity theorem for G-translates of open H-orbits in the minimal flag manifold specified by the 3-grading.
期刊介绍:
This journal examines global problems of geometry and analysis as well as the interactions between these fields and their application to problems of theoretical physics. It contributes to an enlargement of the international exchange of research results in the field.
The areas covered in Annals of Global Analysis and Geometry include: global analysis, differential geometry, complex manifolds and related results from complex analysis and algebraic geometry, Lie groups, Lie transformation groups and harmonic analysis, variational calculus, applications of differential geometry and global analysis to problems of theoretical physics.