时变线性声学系统基于期望最大化的多输入多输出系统识别的灵活框架

IF 2.9 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Tobias Kabzinski;Peter Jax
{"title":"时变线性声学系统基于期望最大化的多输入多输出系统识别的灵活框架","authors":"Tobias Kabzinski;Peter Jax","doi":"10.1109/OJSP.2023.3337721","DOIUrl":null,"url":null,"abstract":"Quasi-continuous system identification of time-variant linear acoustic systems can be applied in various audio signal processing applications when numerous acoustic transfer functions must be measured. A prominent application is measuring head-related transfer functions. We treat the underlying multiple-input-multiple-output (MIMO) system identification problem in a state-space model as a joint estimation problem for states, representing impulse responses, and state-space model parameters using the expectation maximization (EM) algorithm. We address limitations of prior work by imposing different model structures, especially for dependencies within a (transformed) state vector. This results in block diagonal matrix structures, for which we derive M-step update rules. Making assumptions about this model structure and choosing a block size for a given application define the computational complexity. In examples, we found that applying this framework yields improvements of up to 10 dB in relative system distance in comparison to a conventional method.","PeriodicalId":73300,"journal":{"name":"IEEE open journal of signal processing","volume":"5 ","pages":"112-121"},"PeriodicalIF":2.9000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10334061","citationCount":"0","resultStr":"{\"title\":\"A Flexible Framework for Expectation Maximization-Based MIMO System Identification for Time-Variant Linear Acoustic Systems\",\"authors\":\"Tobias Kabzinski;Peter Jax\",\"doi\":\"10.1109/OJSP.2023.3337721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quasi-continuous system identification of time-variant linear acoustic systems can be applied in various audio signal processing applications when numerous acoustic transfer functions must be measured. A prominent application is measuring head-related transfer functions. We treat the underlying multiple-input-multiple-output (MIMO) system identification problem in a state-space model as a joint estimation problem for states, representing impulse responses, and state-space model parameters using the expectation maximization (EM) algorithm. We address limitations of prior work by imposing different model structures, especially for dependencies within a (transformed) state vector. This results in block diagonal matrix structures, for which we derive M-step update rules. Making assumptions about this model structure and choosing a block size for a given application define the computational complexity. In examples, we found that applying this framework yields improvements of up to 10 dB in relative system distance in comparison to a conventional method.\",\"PeriodicalId\":73300,\"journal\":{\"name\":\"IEEE open journal of signal processing\",\"volume\":\"5 \",\"pages\":\"112-121\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10334061\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE open journal of signal processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10334061/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of signal processing","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10334061/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

时变线性声学系统的准连续系统识别可应用于各种音频信号处理应用中,此时必须测量大量声学传递函数。一个突出的应用是测量与头部相关的传递函数。我们使用期望最大化(EM)算法,将状态空间模型中的基本多输入多输出(MIMO)系统识别问题视为状态(代表脉冲响应)和状态空间模型参数的联合估计问题。我们通过采用不同的模型结构,特别是针对(变换后的)状态向量内的依赖关系,解决了之前工作的局限性。这就产生了分块对角矩阵结构,为此我们推导出了 M 步更新规则。对模型结构进行假设,并为特定应用选择块大小,这些都决定了计算复杂度。在实例中,我们发现与传统方法相比,应用这一框架可将相对系统距离提高 10 dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Flexible Framework for Expectation Maximization-Based MIMO System Identification for Time-Variant Linear Acoustic Systems
Quasi-continuous system identification of time-variant linear acoustic systems can be applied in various audio signal processing applications when numerous acoustic transfer functions must be measured. A prominent application is measuring head-related transfer functions. We treat the underlying multiple-input-multiple-output (MIMO) system identification problem in a state-space model as a joint estimation problem for states, representing impulse responses, and state-space model parameters using the expectation maximization (EM) algorithm. We address limitations of prior work by imposing different model structures, especially for dependencies within a (transformed) state vector. This results in block diagonal matrix structures, for which we derive M-step update rules. Making assumptions about this model structure and choosing a block size for a given application define the computational complexity. In examples, we found that applying this framework yields improvements of up to 10 dB in relative system distance in comparison to a conventional method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.30
自引率
0.00%
发文量
0
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信