Sunjae Kwon;Sungu Lee;Taehyoun Kim;Duksan Ryu;Jongmoon Baik
{"title":"探索边缘云基础设施中基于 LLM 的 Ansible 脚本自动修复功能","authors":"Sunjae Kwon;Sungu Lee;Taehyoun Kim;Duksan Ryu;Jongmoon Baik","doi":"10.13052/jwe1540-9589.2263","DOIUrl":null,"url":null,"abstract":"Edge-Cloud system requires massive infrastructures located in closer to the user to minimize latencies in handling Big data. Ansible is one of the most popular Infrastructure as Code (IaC) tools crucial for deploying these infrastructures of the Edge-cloud system. However, Ansible also consists of code, and its code quality is critical in ensuring the delivery of high-quality services within the Edge-Cloud system. On the other hand, the Large Langue Model (LLM) has performed remarkably on various Software Engineering (SE) tasks in recent years. One such task is Automated Program Repairing (APR), where LLMs assist developers in proposing code fixes for identified bugs. Nevertheless, prior studies in LLM-based APR have predominantly concentrated on widely used programming languages (PL), such as Java and C, and there has yet to be an attempt to apply it to Ansible. Hence, we explore the applicability of LLM-based APR on Ansible. We assess LLMs' performance (ChatGPT and Bard) on 58 Ansible script revision cases from Open Source Software (OSS). Our findings reveal promising prospects, with LLMs generating helpful responses in 70% of the sampled cases. Nonetheless, further research is necessary to harness this approach's potential fully.","PeriodicalId":49952,"journal":{"name":"Journal of Web Engineering","volume":"22 6","pages":"889-912"},"PeriodicalIF":0.7000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10376418","citationCount":"0","resultStr":"{\"title\":\"Exploring LLM-Based Automated Repairing of Ansible Script in Edge-Cloud Infrastructures\",\"authors\":\"Sunjae Kwon;Sungu Lee;Taehyoun Kim;Duksan Ryu;Jongmoon Baik\",\"doi\":\"10.13052/jwe1540-9589.2263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Edge-Cloud system requires massive infrastructures located in closer to the user to minimize latencies in handling Big data. Ansible is one of the most popular Infrastructure as Code (IaC) tools crucial for deploying these infrastructures of the Edge-cloud system. However, Ansible also consists of code, and its code quality is critical in ensuring the delivery of high-quality services within the Edge-Cloud system. On the other hand, the Large Langue Model (LLM) has performed remarkably on various Software Engineering (SE) tasks in recent years. One such task is Automated Program Repairing (APR), where LLMs assist developers in proposing code fixes for identified bugs. Nevertheless, prior studies in LLM-based APR have predominantly concentrated on widely used programming languages (PL), such as Java and C, and there has yet to be an attempt to apply it to Ansible. Hence, we explore the applicability of LLM-based APR on Ansible. We assess LLMs' performance (ChatGPT and Bard) on 58 Ansible script revision cases from Open Source Software (OSS). Our findings reveal promising prospects, with LLMs generating helpful responses in 70% of the sampled cases. Nonetheless, further research is necessary to harness this approach's potential fully.\",\"PeriodicalId\":49952,\"journal\":{\"name\":\"Journal of Web Engineering\",\"volume\":\"22 6\",\"pages\":\"889-912\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10376418\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Web Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10376418/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Web Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10376418/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Exploring LLM-Based Automated Repairing of Ansible Script in Edge-Cloud Infrastructures
Edge-Cloud system requires massive infrastructures located in closer to the user to minimize latencies in handling Big data. Ansible is one of the most popular Infrastructure as Code (IaC) tools crucial for deploying these infrastructures of the Edge-cloud system. However, Ansible also consists of code, and its code quality is critical in ensuring the delivery of high-quality services within the Edge-Cloud system. On the other hand, the Large Langue Model (LLM) has performed remarkably on various Software Engineering (SE) tasks in recent years. One such task is Automated Program Repairing (APR), where LLMs assist developers in proposing code fixes for identified bugs. Nevertheless, prior studies in LLM-based APR have predominantly concentrated on widely used programming languages (PL), such as Java and C, and there has yet to be an attempt to apply it to Ansible. Hence, we explore the applicability of LLM-based APR on Ansible. We assess LLMs' performance (ChatGPT and Bard) on 58 Ansible script revision cases from Open Source Software (OSS). Our findings reveal promising prospects, with LLMs generating helpful responses in 70% of the sampled cases. Nonetheless, further research is necessary to harness this approach's potential fully.
期刊介绍:
The World Wide Web and its associated technologies have become a major implementation and delivery platform for a large variety of applications, ranging from simple institutional information Web sites to sophisticated supply-chain management systems, financial applications, e-government, distance learning, and entertainment, among others. Such applications, in addition to their intrinsic functionality, also exhibit the more complex behavior of distributed applications.