分布阶波方程在 $$\mathbb {R}^N$$ 上的解析性

IF 1.9 3区 数学 Q1 MATHEMATICS
Yan Ling Zhou, Yong Zhou, Xuan-Xuan Xi
{"title":"分布阶波方程在 $$\\mathbb {R}^N$$ 上的解析性","authors":"Yan Ling Zhou, Yong Zhou, Xuan-Xuan Xi","doi":"10.1007/s12346-023-00915-8","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Distributed-order calculus can summarize the intrinsic multiscale effects of integer and fractional order operators, and construct a more complex physical model. The paper is devoted to study the time distributed-order wave equation. First, we give the definition of distributed-order integral operators <span> <span>\\(I ^{(\\mu )}\\)</span> </span> in <span> <span>\\(\\alpha \\in [1,2]\\)</span> </span>, and from the definition of the integral operator, we found that the operator has similar properties to the fractional integral operators. Next, according to the properties of the distributed-order integral operator and Laplace transform, we obtain the expression of the solution of the distributed-order wave equation. Then we use the resolvent operator to estimate the solution operators. At last, we further studied the liner or semilinear wave problem with the distributed-order derivative on <span> <span>\\(\\mathbb {R}^N\\)</span> </span> and used the contraction mapping principle to prove the existence and uniqueness of mild solution.</p>","PeriodicalId":48886,"journal":{"name":"Qualitative Theory of Dynamical Systems","volume":"206 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Well-Posedness for the Distributed-Order Wave Equation on $$\\\\mathbb {R}^N$$\",\"authors\":\"Yan Ling Zhou, Yong Zhou, Xuan-Xuan Xi\",\"doi\":\"10.1007/s12346-023-00915-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>Distributed-order calculus can summarize the intrinsic multiscale effects of integer and fractional order operators, and construct a more complex physical model. The paper is devoted to study the time distributed-order wave equation. First, we give the definition of distributed-order integral operators <span> <span>\\\\(I ^{(\\\\mu )}\\\\)</span> </span> in <span> <span>\\\\(\\\\alpha \\\\in [1,2]\\\\)</span> </span>, and from the definition of the integral operator, we found that the operator has similar properties to the fractional integral operators. Next, according to the properties of the distributed-order integral operator and Laplace transform, we obtain the expression of the solution of the distributed-order wave equation. Then we use the resolvent operator to estimate the solution operators. At last, we further studied the liner or semilinear wave problem with the distributed-order derivative on <span> <span>\\\\(\\\\mathbb {R}^N\\\\)</span> </span> and used the contraction mapping principle to prove the existence and uniqueness of mild solution.</p>\",\"PeriodicalId\":48886,\"journal\":{\"name\":\"Qualitative Theory of Dynamical Systems\",\"volume\":\"206 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Qualitative Theory of Dynamical Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s12346-023-00915-8\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Qualitative Theory of Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12346-023-00915-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 分布式阶微积分可以概括整阶和分数阶算子的内在多尺度效应,并构建更复杂的物理模型。本文主要研究时间分布阶波方程。首先,我们给出了分布阶积分算子 \(I ^{(\mu )}\) in \(\alpha \in [1,2]\) 的定义,并从积分算子的定义中发现该算子具有与分数积分算子相似的性质。接下来,根据分布阶积分算子和拉普拉斯变换的性质,我们得到了分布阶波方程的解的表达式。然后,我们利用解析算子来估计解算子。最后,我们进一步研究了在\(\mathbb {R}^N\) 上具有分布阶导数的衬波或半线性波问题,并利用收缩映射原理证明了温和解的存在性和唯一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Well-Posedness for the Distributed-Order Wave Equation on $$\mathbb {R}^N$$

Abstract

Distributed-order calculus can summarize the intrinsic multiscale effects of integer and fractional order operators, and construct a more complex physical model. The paper is devoted to study the time distributed-order wave equation. First, we give the definition of distributed-order integral operators \(I ^{(\mu )}\) in \(\alpha \in [1,2]\) , and from the definition of the integral operator, we found that the operator has similar properties to the fractional integral operators. Next, according to the properties of the distributed-order integral operator and Laplace transform, we obtain the expression of the solution of the distributed-order wave equation. Then we use the resolvent operator to estimate the solution operators. At last, we further studied the liner or semilinear wave problem with the distributed-order derivative on \(\mathbb {R}^N\) and used the contraction mapping principle to prove the existence and uniqueness of mild solution.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Qualitative Theory of Dynamical Systems
Qualitative Theory of Dynamical Systems MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.50
自引率
14.30%
发文量
130
期刊介绍: Qualitative Theory of Dynamical Systems (QTDS) publishes high-quality peer-reviewed research articles on the theory and applications of discrete and continuous dynamical systems. The journal addresses mathematicians as well as engineers, physicists, and other scientists who use dynamical systems as valuable research tools. The journal is not interested in numerical results, except if these illustrate theoretical results previously proved.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信