等价对应和 Pimsner 对象上的紧凑量子群作用

Suvrajit Bhattacharjee, Soumalya Joardar
{"title":"等价对应和 Pimsner 对象上的紧凑量子群作用","authors":"Suvrajit Bhattacharjee, Soumalya Joardar","doi":"10.4153/s0008414x23000810","DOIUrl":null,"url":null,"abstract":"<p>Let <span>G</span> be a compact quantum group. We show that given a <span>G</span>-equivariant <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231223072731647-0534:S0008414X23000810:S0008414X23000810_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\textrm {C}^*$</span></span></img></span></span>-correspondence <span>E</span>, the Pimsner algebra <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231223072731647-0534:S0008414X23000810:S0008414X23000810_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal {O}_E$</span></span></img></span></span> can be naturally made into a <span>G</span>-<span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231223072731647-0534:S0008414X23000810:S0008414X23000810_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$\\textrm {C}^*$</span></span></img></span></span>-algebra. We also provide sufficient conditions under which it is guaranteed that a <span>G</span>-action on the Pimsner algebra <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231223072731647-0534:S0008414X23000810:S0008414X23000810_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal {O}_E$</span></span></img></span></span> arises in this way, in a suitable precise sense. When <span>G</span> is of Kac type, a KMS state on the Pimsner algebra, arising from a quasi-free dynamics, is <span>G</span>-equivariant if and only if the tracial state obtained from restricting it to the coefficient algebra is <span>G</span>-equivariant, under a natural condition. We apply these results to the situation when the <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231223072731647-0534:S0008414X23000810:S0008414X23000810_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$\\textrm {C}^*$</span></span></img></span></span>-correspondence is obtained from a finite, directed graph and draw various conclusions on the quantum automorphism groups of such graphs, both in the sense of Banica and Bichon.</p>","PeriodicalId":501820,"journal":{"name":"Canadian Journal of Mathematics","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Equivariant -correspondences and compact quantum group actions on Pimsner algebras\",\"authors\":\"Suvrajit Bhattacharjee, Soumalya Joardar\",\"doi\":\"10.4153/s0008414x23000810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span>G</span> be a compact quantum group. We show that given a <span>G</span>-equivariant <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231223072731647-0534:S0008414X23000810:S0008414X23000810_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\textrm {C}^*$</span></span></img></span></span>-correspondence <span>E</span>, the Pimsner algebra <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231223072731647-0534:S0008414X23000810:S0008414X23000810_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathcal {O}_E$</span></span></img></span></span> can be naturally made into a <span>G</span>-<span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231223072731647-0534:S0008414X23000810:S0008414X23000810_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\textrm {C}^*$</span></span></img></span></span>-algebra. We also provide sufficient conditions under which it is guaranteed that a <span>G</span>-action on the Pimsner algebra <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231223072731647-0534:S0008414X23000810:S0008414X23000810_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathcal {O}_E$</span></span></img></span></span> arises in this way, in a suitable precise sense. When <span>G</span> is of Kac type, a KMS state on the Pimsner algebra, arising from a quasi-free dynamics, is <span>G</span>-equivariant if and only if the tracial state obtained from restricting it to the coefficient algebra is <span>G</span>-equivariant, under a natural condition. We apply these results to the situation when the <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231223072731647-0534:S0008414X23000810:S0008414X23000810_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\textrm {C}^*$</span></span></img></span></span>-correspondence is obtained from a finite, directed graph and draw various conclusions on the quantum automorphism groups of such graphs, both in the sense of Banica and Bichon.</p>\",\"PeriodicalId\":501820,\"journal\":{\"name\":\"Canadian Journal of Mathematics\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4153/s0008414x23000810\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4153/s0008414x23000810","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 G 是一个紧凑量子群。我们证明,给定一个 G-变量 $\textrm {C}^*$ 对应 E,皮姆斯纳代数 $\mathcal {O}_E$ 可以自然地变成一个 G-$\textrm {C}^*$ 代数。我们还提供了充分条件,保证在适当的精确意义上,以这种方式在皮姆斯纳代数 $\mathcal {O}_E$ 上产生一个 G 作用。当 G 是 Kac 类型时,由准无动力学产生的 Pimsner 代数上的 KMS 状态是 G 可变的,当且仅当把它限制在系数代数中得到的三元状态是 G 可变的,在一个自然条件下。我们将这些结果应用于从有限有向图得到 $\textrm {C}^*$ 对应的情况,并从巴尼卡(Banica)和比琼(Bichon)的意义上得出了关于这种图的量子自变群的各种结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Equivariant -correspondences and compact quantum group actions on Pimsner algebras

Let G be a compact quantum group. We show that given a G-equivariant $\textrm {C}^*$-correspondence E, the Pimsner algebra $\mathcal {O}_E$ can be naturally made into a G-$\textrm {C}^*$-algebra. We also provide sufficient conditions under which it is guaranteed that a G-action on the Pimsner algebra $\mathcal {O}_E$ arises in this way, in a suitable precise sense. When G is of Kac type, a KMS state on the Pimsner algebra, arising from a quasi-free dynamics, is G-equivariant if and only if the tracial state obtained from restricting it to the coefficient algebra is G-equivariant, under a natural condition. We apply these results to the situation when the $\textrm {C}^*$-correspondence is obtained from a finite, directed graph and draw various conclusions on the quantum automorphism groups of such graphs, both in the sense of Banica and Bichon.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信