{"title":"新颖的市场情绪衡量标准:评估 VIX 与全球意识项目数据之间的联系","authors":"Ulf Holmberg","doi":"10.1108/jes-11-2023-0663","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>The primary objective of this research is to explore the potential of utilizing Global Consciousness Project (GCP) data as a tool for understanding and predicting market sentiment. Specifically, the study aims to assess whether incorporating GCP data into econometric models can enhance the comprehension of daily market movements, providing valuable insights for traders.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>This study employs econometric models to investigate the correlation between the Standard & Poor's 500 Volatility Index (VIX), a common measure of market sentiment and data from the GCP. The focus is particularly on the largest daily composite GCP data value (Max[Z]) and its significant covariation with changes in VIX. The research employs interaction terms with VIX and daily returns from global markets, including Europe and Asia, to explore the relationship further.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The results reveal a significant relationship with the GCP data, particularly Max[Z] and VIX. Interaction terms with both VIX and daily returns from global markets are highly significant, explaining about one percent of the variance in the econometric model. This finding suggests that variations in GCP data can contribute to a better understanding of market dynamics and improve forecasting accuracy.</p><!--/ Abstract__block -->\n<h3>Research limitations/implications</h3>\n<p>One limitation of this study is the potential for overfitting and P-hacking. To address this concern, the models undergo rigorous testing in an out-of-sample simulation study lasting for a predefined one-year period. This limitation underscores the need for cautious interpretation and application of the findings, recognizing the complexities and uncertainties inherent in market dynamics.</p><!--/ Abstract__block -->\n<h3>Practical implications</h3>\n<p>The study explores the practical implications of incorporating GCP data into trading strategies. Econometric models, both with and without GCP data, are subjected to an out-of-sample simulation where an artificial trader employs S&P 500 tracking instruments based on the model's one-day-ahead forecasts. The results suggest that GCP data can enhance daily forecasts, offering practical value for traders seeking improved decision-making tools.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>Utilizing data from the GCP is found to be advantageous for traders as noteworthy correlations with market sentiment are found. This unanticipated finding challenges established paradigms in both economics and consciousness research, seamlessly integrating these domains of research. Traders can leverage this innovative tool, as it can be used to refine forecasting precision.</p><!--/ Abstract__block -->","PeriodicalId":47604,"journal":{"name":"JOURNAL OF ECONOMIC STUDIES","volume":"5 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel market sentiment measure: assessing the link between VIX and the Global Consciousness Projects data\",\"authors\":\"Ulf Holmberg\",\"doi\":\"10.1108/jes-11-2023-0663\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Purpose</h3>\\n<p>The primary objective of this research is to explore the potential of utilizing Global Consciousness Project (GCP) data as a tool for understanding and predicting market sentiment. Specifically, the study aims to assess whether incorporating GCP data into econometric models can enhance the comprehension of daily market movements, providing valuable insights for traders.</p><!--/ Abstract__block -->\\n<h3>Design/methodology/approach</h3>\\n<p>This study employs econometric models to investigate the correlation between the Standard & Poor's 500 Volatility Index (VIX), a common measure of market sentiment and data from the GCP. The focus is particularly on the largest daily composite GCP data value (Max[Z]) and its significant covariation with changes in VIX. The research employs interaction terms with VIX and daily returns from global markets, including Europe and Asia, to explore the relationship further.</p><!--/ Abstract__block -->\\n<h3>Findings</h3>\\n<p>The results reveal a significant relationship with the GCP data, particularly Max[Z] and VIX. Interaction terms with both VIX and daily returns from global markets are highly significant, explaining about one percent of the variance in the econometric model. This finding suggests that variations in GCP data can contribute to a better understanding of market dynamics and improve forecasting accuracy.</p><!--/ Abstract__block -->\\n<h3>Research limitations/implications</h3>\\n<p>One limitation of this study is the potential for overfitting and P-hacking. To address this concern, the models undergo rigorous testing in an out-of-sample simulation study lasting for a predefined one-year period. This limitation underscores the need for cautious interpretation and application of the findings, recognizing the complexities and uncertainties inherent in market dynamics.</p><!--/ Abstract__block -->\\n<h3>Practical implications</h3>\\n<p>The study explores the practical implications of incorporating GCP data into trading strategies. Econometric models, both with and without GCP data, are subjected to an out-of-sample simulation where an artificial trader employs S&P 500 tracking instruments based on the model's one-day-ahead forecasts. The results suggest that GCP data can enhance daily forecasts, offering practical value for traders seeking improved decision-making tools.</p><!--/ Abstract__block -->\\n<h3>Originality/value</h3>\\n<p>Utilizing data from the GCP is found to be advantageous for traders as noteworthy correlations with market sentiment are found. This unanticipated finding challenges established paradigms in both economics and consciousness research, seamlessly integrating these domains of research. Traders can leverage this innovative tool, as it can be used to refine forecasting precision.</p><!--/ Abstract__block -->\",\"PeriodicalId\":47604,\"journal\":{\"name\":\"JOURNAL OF ECONOMIC STUDIES\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOURNAL OF ECONOMIC STUDIES\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/jes-11-2023-0663\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF ECONOMIC STUDIES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/jes-11-2023-0663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
A novel market sentiment measure: assessing the link between VIX and the Global Consciousness Projects data
Purpose
The primary objective of this research is to explore the potential of utilizing Global Consciousness Project (GCP) data as a tool for understanding and predicting market sentiment. Specifically, the study aims to assess whether incorporating GCP data into econometric models can enhance the comprehension of daily market movements, providing valuable insights for traders.
Design/methodology/approach
This study employs econometric models to investigate the correlation between the Standard & Poor's 500 Volatility Index (VIX), a common measure of market sentiment and data from the GCP. The focus is particularly on the largest daily composite GCP data value (Max[Z]) and its significant covariation with changes in VIX. The research employs interaction terms with VIX and daily returns from global markets, including Europe and Asia, to explore the relationship further.
Findings
The results reveal a significant relationship with the GCP data, particularly Max[Z] and VIX. Interaction terms with both VIX and daily returns from global markets are highly significant, explaining about one percent of the variance in the econometric model. This finding suggests that variations in GCP data can contribute to a better understanding of market dynamics and improve forecasting accuracy.
Research limitations/implications
One limitation of this study is the potential for overfitting and P-hacking. To address this concern, the models undergo rigorous testing in an out-of-sample simulation study lasting for a predefined one-year period. This limitation underscores the need for cautious interpretation and application of the findings, recognizing the complexities and uncertainties inherent in market dynamics.
Practical implications
The study explores the practical implications of incorporating GCP data into trading strategies. Econometric models, both with and without GCP data, are subjected to an out-of-sample simulation where an artificial trader employs S&P 500 tracking instruments based on the model's one-day-ahead forecasts. The results suggest that GCP data can enhance daily forecasts, offering practical value for traders seeking improved decision-making tools.
Originality/value
Utilizing data from the GCP is found to be advantageous for traders as noteworthy correlations with market sentiment are found. This unanticipated finding challenges established paradigms in both economics and consciousness research, seamlessly integrating these domains of research. Traders can leverage this innovative tool, as it can be used to refine forecasting precision.
期刊介绍:
The Journal of Economic Studies publishes high quality research findings and commentary on international developments in economics. The journal maintains a sound balance between economic theory and application at both the micro and the macro levels. Articles on economic issues between individual nations, emerging and evolving trading blocs are particularly welcomed. Contributors are encouraged to spell out the practical implications of their work for economists in government and industry