具有平缓海岸的一维盆地中长非线性传播波的渐近学

IF 1.7 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
D.S. Minenkov, M.M. Votiakova
{"title":"具有平缓海岸的一维盆地中长非线性传播波的渐近学","authors":"D.S. Minenkov,&nbsp;M.M. Votiakova","doi":"10.1134/S1061920823040143","DOIUrl":null,"url":null,"abstract":"<p> The Cauchy problem for a one-dimensional (nonlinear) shallow water equations over a variable bottom <span>\\(D(x)\\)</span> is considered in an extended basin bounded from two sides by shores (where the bottom degenerates, <span>\\(D(a)=0\\)</span>), or by a shore and a wall. The short-wave asymptotics of the linearized system in the form of a propagating localized wave is constructed. After applying to the constructed functions a simple parametric or explicit change of variables proposed in recent papers (Dobrokhotov, Minenkov, Nazaikinsky, 2022 and Dobrokhotov, Kalinichenko, Minenkov, Nazaikinsky, 2023), we obtain the asymptotics of the original nonlinear problem. On the constructed families of functions, the ratio of the amplitude and the wavelength is studied for which hte wave does not collapse when running up to the shore. </p><p> <b> DOI</b> 10.1134/S1061920823040143 </p>","PeriodicalId":763,"journal":{"name":"Russian Journal of Mathematical Physics","volume":"30 4","pages":"621 - 642"},"PeriodicalIF":1.7000,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotics of Long Nonlinear Propagating Waves in a One-Dimensional Basin with Gentle Shores\",\"authors\":\"D.S. Minenkov,&nbsp;M.M. Votiakova\",\"doi\":\"10.1134/S1061920823040143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> The Cauchy problem for a one-dimensional (nonlinear) shallow water equations over a variable bottom <span>\\\\(D(x)\\\\)</span> is considered in an extended basin bounded from two sides by shores (where the bottom degenerates, <span>\\\\(D(a)=0\\\\)</span>), or by a shore and a wall. The short-wave asymptotics of the linearized system in the form of a propagating localized wave is constructed. After applying to the constructed functions a simple parametric or explicit change of variables proposed in recent papers (Dobrokhotov, Minenkov, Nazaikinsky, 2022 and Dobrokhotov, Kalinichenko, Minenkov, Nazaikinsky, 2023), we obtain the asymptotics of the original nonlinear problem. On the constructed families of functions, the ratio of the amplitude and the wavelength is studied for which hte wave does not collapse when running up to the shore. </p><p> <b> DOI</b> 10.1134/S1061920823040143 </p>\",\"PeriodicalId\":763,\"journal\":{\"name\":\"Russian Journal of Mathematical Physics\",\"volume\":\"30 4\",\"pages\":\"621 - 642\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1061920823040143\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1061920823040143","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

摘要 在一个两边以岸为界(其中底退化,\(D(a)=0\))或以岸和墙为界的扩展盆地中,考虑了可变底\(D(x)\)上一维(非线性)浅水方程的 Cauchy 问题。以传播局部波的形式构建了线性化系统的短波渐近线。将最近论文(Dobrokhotov, Minenkov, Nazaikinsky, 2022 和 Dobrokhotov, Kalinichenko, Minenkov, Nazaikinsky, 2023)中提出的简单参数或显式变量变化应用于所构建的函数后,我们得到了原始非线性问题的渐近线。在所构建的函数族上,我们研究了波浪在冲向海岸时不会坍塌的振幅与波长之比。 doi 10.1134/s1061920823040143
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Asymptotics of Long Nonlinear Propagating Waves    in a One-Dimensional Basin with Gentle Shores

Asymptotics of Long Nonlinear Propagating Waves in a One-Dimensional Basin with Gentle Shores

The Cauchy problem for a one-dimensional (nonlinear) shallow water equations over a variable bottom \(D(x)\) is considered in an extended basin bounded from two sides by shores (where the bottom degenerates, \(D(a)=0\)), or by a shore and a wall. The short-wave asymptotics of the linearized system in the form of a propagating localized wave is constructed. After applying to the constructed functions a simple parametric or explicit change of variables proposed in recent papers (Dobrokhotov, Minenkov, Nazaikinsky, 2022 and Dobrokhotov, Kalinichenko, Minenkov, Nazaikinsky, 2023), we obtain the asymptotics of the original nonlinear problem. On the constructed families of functions, the ratio of the amplitude and the wavelength is studied for which hte wave does not collapse when running up to the shore.

DOI 10.1134/S1061920823040143

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Journal of Mathematical Physics
Russian Journal of Mathematical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
14.30%
发文量
30
审稿时长
>12 weeks
期刊介绍: Russian Journal of Mathematical Physics is a peer-reviewed periodical that deals with the full range of topics subsumed by that discipline, which lies at the foundation of much of contemporary science. Thus, in addition to mathematical physics per se, the journal coverage includes, but is not limited to, functional analysis, linear and nonlinear partial differential equations, algebras, quantization, quantum field theory, modern differential and algebraic geometry and topology, representations of Lie groups, calculus of variations, asymptotic methods, random process theory, dynamical systems, and control theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信