Liu Lu, Xinyu Huang, Xiaojun Zhou, Junfei Guo, Xiaohu Yang, Jinyue Yan
{"title":"利用时间序列深度学习为室内空气质量评估提供高性能甲醛预测","authors":"Liu Lu, Xinyu Huang, Xiaojun Zhou, Junfei Guo, Xiaohu Yang, Jinyue Yan","doi":"10.1007/s12273-023-1091-4","DOIUrl":null,"url":null,"abstract":"<p>Indoor air pollution resulting from volatile organic compounds (VOCs), especially formaldehyde, is a significant health concern needed to predict indoor formaldehyde concentration (C<sub>f</sub>) in green intelligent building design. This study develops a thermal and wet coupling calculation model of porous fabric to account for the migration of formaldehyde molecules in indoor air and cotton, silk, and polyester fabric with heat flux in Harbin, Beijing, Xi’an, Shanghai, Guangzhou, and Kunming, China. The time-by-time indoor dry-bulb temperature (<i>T</i>), relative humidity (<i>RH</i>), and C<sub>f</sub>, obtained from verified simulations, were collated and used as input data for the long short-term memory (LSTM) of the deep learning model that predicts indoor multivariate time series C<sub>f</sub> from the secondary source effects of indoor fabrics (adsorption and release of formaldehyde). The trained LSTM model can be used to predict multivariate time series Cf at other emission times and locations. The LSTM-based model also predicted C<sub>f</sub> with mean absolute percentage error (MAPE), symmetric mean absolute percentage error (SMAPE), mean absolute error (MAE), mean square error (MSE), and root mean square error (RMSE) that fell within 10%, 10%, 0.5, 0.5, and 0.8, respectively. In addition, the characteristics of the input dataset, model parameters, the prediction accuracy of different indoor fabrics, and the uncertainty of the data set are analyzed. The results show that the prediction accuracy of single data set input is higher than that of temperature and humidity input, and the prediction accuracy of LSTM is better than recurrent neural network (RNN). The method’s feasibility was established, and the study provides theoretical support for guiding indoor air pollution control measures and ensuring human health and safety.</p>","PeriodicalId":49226,"journal":{"name":"Building Simulation","volume":"135 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-performance formaldehyde prediction for indoor air quality assessment using time series deep learning\",\"authors\":\"Liu Lu, Xinyu Huang, Xiaojun Zhou, Junfei Guo, Xiaohu Yang, Jinyue Yan\",\"doi\":\"10.1007/s12273-023-1091-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Indoor air pollution resulting from volatile organic compounds (VOCs), especially formaldehyde, is a significant health concern needed to predict indoor formaldehyde concentration (C<sub>f</sub>) in green intelligent building design. This study develops a thermal and wet coupling calculation model of porous fabric to account for the migration of formaldehyde molecules in indoor air and cotton, silk, and polyester fabric with heat flux in Harbin, Beijing, Xi’an, Shanghai, Guangzhou, and Kunming, China. The time-by-time indoor dry-bulb temperature (<i>T</i>), relative humidity (<i>RH</i>), and C<sub>f</sub>, obtained from verified simulations, were collated and used as input data for the long short-term memory (LSTM) of the deep learning model that predicts indoor multivariate time series C<sub>f</sub> from the secondary source effects of indoor fabrics (adsorption and release of formaldehyde). The trained LSTM model can be used to predict multivariate time series Cf at other emission times and locations. The LSTM-based model also predicted C<sub>f</sub> with mean absolute percentage error (MAPE), symmetric mean absolute percentage error (SMAPE), mean absolute error (MAE), mean square error (MSE), and root mean square error (RMSE) that fell within 10%, 10%, 0.5, 0.5, and 0.8, respectively. In addition, the characteristics of the input dataset, model parameters, the prediction accuracy of different indoor fabrics, and the uncertainty of the data set are analyzed. The results show that the prediction accuracy of single data set input is higher than that of temperature and humidity input, and the prediction accuracy of LSTM is better than recurrent neural network (RNN). The method’s feasibility was established, and the study provides theoretical support for guiding indoor air pollution control measures and ensuring human health and safety.</p>\",\"PeriodicalId\":49226,\"journal\":{\"name\":\"Building Simulation\",\"volume\":\"135 1\",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2023-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Building Simulation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12273-023-1091-4\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Building Simulation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12273-023-1091-4","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
High-performance formaldehyde prediction for indoor air quality assessment using time series deep learning
Indoor air pollution resulting from volatile organic compounds (VOCs), especially formaldehyde, is a significant health concern needed to predict indoor formaldehyde concentration (Cf) in green intelligent building design. This study develops a thermal and wet coupling calculation model of porous fabric to account for the migration of formaldehyde molecules in indoor air and cotton, silk, and polyester fabric with heat flux in Harbin, Beijing, Xi’an, Shanghai, Guangzhou, and Kunming, China. The time-by-time indoor dry-bulb temperature (T), relative humidity (RH), and Cf, obtained from verified simulations, were collated and used as input data for the long short-term memory (LSTM) of the deep learning model that predicts indoor multivariate time series Cf from the secondary source effects of indoor fabrics (adsorption and release of formaldehyde). The trained LSTM model can be used to predict multivariate time series Cf at other emission times and locations. The LSTM-based model also predicted Cf with mean absolute percentage error (MAPE), symmetric mean absolute percentage error (SMAPE), mean absolute error (MAE), mean square error (MSE), and root mean square error (RMSE) that fell within 10%, 10%, 0.5, 0.5, and 0.8, respectively. In addition, the characteristics of the input dataset, model parameters, the prediction accuracy of different indoor fabrics, and the uncertainty of the data set are analyzed. The results show that the prediction accuracy of single data set input is higher than that of temperature and humidity input, and the prediction accuracy of LSTM is better than recurrent neural network (RNN). The method’s feasibility was established, and the study provides theoretical support for guiding indoor air pollution control measures and ensuring human health and safety.
期刊介绍:
Building Simulation: An International Journal publishes original, high quality, peer-reviewed research papers and review articles dealing with modeling and simulation of buildings including their systems. The goal is to promote the field of building science and technology to such a level that modeling will eventually be used in every aspect of building construction as a routine instead of an exception. Of particular interest are papers that reflect recent developments and applications of modeling tools and their impact on advances of building science and technology.