线性抛物线最优控制问题的对偶方法

Hailing Wang, Di Wu, Changjun Yu, Kok Lay Teo
{"title":"线性抛物线最优控制问题的对偶方法","authors":"Hailing Wang, Di Wu, Changjun Yu, Kok Lay Teo","doi":"10.1002/oca.3094","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the optimal control problem governed by linear parabolic equation with box constraints on control variables. We employ the Fenchel duality scheme to derive an unconstrained dual problem. Compared with the primal problem, the objective functional of the dual problem includes a projection onto the box constraints. We prove the existence and uniqueness of solutions to the dual problem and derive the first-order optimality conditions. Furthermore, we investigate the saddle point property between the solutions of the primal problem and the solutions of the dual problem. To solve the dual problem, we design two implementable methods: the conjugate gradient method and the semi-smooth Newton method. The solutions of the primal problem can be easily obtained through the solutions of the dual problem. We demonstrate the effectiveness and accuracy of the proposed methods by solving three example problems.","PeriodicalId":501055,"journal":{"name":"Optimal Control Applications and Methods","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A duality-based approach for linear parabolic optimal control problems\",\"authors\":\"Hailing Wang, Di Wu, Changjun Yu, Kok Lay Teo\",\"doi\":\"10.1002/oca.3094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is concerned with the optimal control problem governed by linear parabolic equation with box constraints on control variables. We employ the Fenchel duality scheme to derive an unconstrained dual problem. Compared with the primal problem, the objective functional of the dual problem includes a projection onto the box constraints. We prove the existence and uniqueness of solutions to the dual problem and derive the first-order optimality conditions. Furthermore, we investigate the saddle point property between the solutions of the primal problem and the solutions of the dual problem. To solve the dual problem, we design two implementable methods: the conjugate gradient method and the semi-smooth Newton method. The solutions of the primal problem can be easily obtained through the solutions of the dual problem. We demonstrate the effectiveness and accuracy of the proposed methods by solving three example problems.\",\"PeriodicalId\":501055,\"journal\":{\"name\":\"Optimal Control Applications and Methods\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optimal Control Applications and Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/oca.3094\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimal Control Applications and Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/oca.3094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文关注的是线性抛物线方程所支配的最优控制问题,该方程对控制变量有箱约束。我们采用 Fenchel 对偶方案推导出一个无约束对偶问题。与原始问题相比,对偶问题的目标函数包括对箱约束的投影。我们证明了对偶问题解的存在性和唯一性,并推导出了一阶最优条件。此外,我们还研究了原始问题解与对偶问题解之间的鞍点特性。为了求解对偶问题,我们设计了两种可实现的方法:共轭梯度法和半光滑牛顿法。通过对偶问题的求解,可以很容易地得到原始问题的解。我们通过解决三个示例问题证明了所提方法的有效性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A duality-based approach for linear parabolic optimal control problems

A duality-based approach for linear parabolic optimal control problems
This paper is concerned with the optimal control problem governed by linear parabolic equation with box constraints on control variables. We employ the Fenchel duality scheme to derive an unconstrained dual problem. Compared with the primal problem, the objective functional of the dual problem includes a projection onto the box constraints. We prove the existence and uniqueness of solutions to the dual problem and derive the first-order optimality conditions. Furthermore, we investigate the saddle point property between the solutions of the primal problem and the solutions of the dual problem. To solve the dual problem, we design two implementable methods: the conjugate gradient method and the semi-smooth Newton method. The solutions of the primal problem can be easily obtained through the solutions of the dual problem. We demonstrate the effectiveness and accuracy of the proposed methods by solving three example problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信