周期性双曲系统同质化的特洛特-卡托定理主题变奏曲

IF 1.7 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
Yu.M. Meshkova
{"title":"周期性双曲系统同质化的特洛特-卡托定理主题变奏曲","authors":"Yu.M. Meshkova","doi":"10.1134/S106192082304012X","DOIUrl":null,"url":null,"abstract":"<p> In <span>\\(L_2(\\mathbb{R}^d;\\mathbb{C}^n)\\)</span>, we consider a matrix elliptic second order differential operator <span>\\(B_\\varepsilon &gt;0\\)</span>. Coefficients of the operator <span>\\(B_\\varepsilon\\)</span> are periodic with respect to some lattice in <span>\\(\\mathbb{R}^d\\)</span> and depend on <span>\\(\\mathbf{x}/\\varepsilon\\)</span>. We study the quantitative homogenization for the solutions of the hyperbolic system <span>\\(\\partial _t^2\\mathbf{u}_\\varepsilon =-B_\\varepsilon\\mathbf{u}_\\varepsilon\\)</span>. In operator terms, we are interested in approximations of the operators <span>\\(\\cos (tB_\\varepsilon ^{1/2})\\)</span> and <span>\\(B_\\varepsilon ^{-1/2}\\sin (tB_\\varepsilon ^{1/2})\\)</span> in suitable operator norms. Approximations for the resolvent <span>\\(B_\\varepsilon ^{-1}\\)</span> have been already obtained by T.A. Suslina. So, we rewrite hyperbolic equation as a system for the vector with components <span>\\(\\mathbf{u}_\\varepsilon \\)</span> and <span>\\(\\partial _t\\mathbf{u}_\\varepsilon\\)</span>, and consider the corresponding unitary group. For this group, we adapt the proof of the Trotter-Kato theorem by introduction of some correction term and derive hyperbolic results from elliptic ones. </p><p> <b> DOI</b> 10.1134/S106192082304012X </p>","PeriodicalId":763,"journal":{"name":"Russian Journal of Mathematical Physics","volume":"30 4","pages":"561 - 598"},"PeriodicalIF":1.7000,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variations on the theme of the Trotter-Kato theorem for homogenization of periodic hyperbolic systems\",\"authors\":\"Yu.M. Meshkova\",\"doi\":\"10.1134/S106192082304012X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> In <span>\\\\(L_2(\\\\mathbb{R}^d;\\\\mathbb{C}^n)\\\\)</span>, we consider a matrix elliptic second order differential operator <span>\\\\(B_\\\\varepsilon &gt;0\\\\)</span>. Coefficients of the operator <span>\\\\(B_\\\\varepsilon\\\\)</span> are periodic with respect to some lattice in <span>\\\\(\\\\mathbb{R}^d\\\\)</span> and depend on <span>\\\\(\\\\mathbf{x}/\\\\varepsilon\\\\)</span>. We study the quantitative homogenization for the solutions of the hyperbolic system <span>\\\\(\\\\partial _t^2\\\\mathbf{u}_\\\\varepsilon =-B_\\\\varepsilon\\\\mathbf{u}_\\\\varepsilon\\\\)</span>. In operator terms, we are interested in approximations of the operators <span>\\\\(\\\\cos (tB_\\\\varepsilon ^{1/2})\\\\)</span> and <span>\\\\(B_\\\\varepsilon ^{-1/2}\\\\sin (tB_\\\\varepsilon ^{1/2})\\\\)</span> in suitable operator norms. Approximations for the resolvent <span>\\\\(B_\\\\varepsilon ^{-1}\\\\)</span> have been already obtained by T.A. Suslina. So, we rewrite hyperbolic equation as a system for the vector with components <span>\\\\(\\\\mathbf{u}_\\\\varepsilon \\\\)</span> and <span>\\\\(\\\\partial _t\\\\mathbf{u}_\\\\varepsilon\\\\)</span>, and consider the corresponding unitary group. For this group, we adapt the proof of the Trotter-Kato theorem by introduction of some correction term and derive hyperbolic results from elliptic ones. </p><p> <b> DOI</b> 10.1134/S106192082304012X </p>\",\"PeriodicalId\":763,\"journal\":{\"name\":\"Russian Journal of Mathematical Physics\",\"volume\":\"30 4\",\"pages\":\"561 - 598\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S106192082304012X\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S106192082304012X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

Abstract 在 \(L_2(\mathbb{R}^d;\mathbb{C}^n)\) 中,我们考虑一个矩阵椭圆二阶微分算子 \(B_\varepsilon>0\)。算子 \(B_\varepsilon\) 的系数对于 \(\mathbb{R}^d\) 中的某个晶格是周期性的,并且取决于 \(\mathbf{x}/\varepsilon/)。我们研究双曲系统 \(\partial _t^2\mathbf{u}_\varepsilon =-B_\varepsilon\mathbf{u}_\varepsilon\) 解的定量同质化。在算子方面,我们感兴趣的是算子 \(\cos (tB_\varepsilon ^{1/2})\) 和 \(B_\varepsilon ^{-1/2}\sin (tB_\varepsilon ^{1/2})\) 在合适算子规范下的近似值。T.A. Suslina 已经得到了解析量 \(B_\varepsilon ^{-1}\)的近似值。因此,我们把双曲方程重写为一个包含 \(\mathbf{u}_\varepsilon \) 和 \(\partial _t\mathbf{u}_\varepsilon\) 的向量系统,并考虑相应的单元群。对于这个群,我们通过引入一些修正项来调整特劳特-加藤定理的证明,并从椭圆结果推导出双曲结果。 doi 10.1134/s106192082304012x
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Variations on the theme of the Trotter-Kato theorem for homogenization of periodic hyperbolic systems

In \(L_2(\mathbb{R}^d;\mathbb{C}^n)\), we consider a matrix elliptic second order differential operator \(B_\varepsilon >0\). Coefficients of the operator \(B_\varepsilon\) are periodic with respect to some lattice in \(\mathbb{R}^d\) and depend on \(\mathbf{x}/\varepsilon\). We study the quantitative homogenization for the solutions of the hyperbolic system \(\partial _t^2\mathbf{u}_\varepsilon =-B_\varepsilon\mathbf{u}_\varepsilon\). In operator terms, we are interested in approximations of the operators \(\cos (tB_\varepsilon ^{1/2})\) and \(B_\varepsilon ^{-1/2}\sin (tB_\varepsilon ^{1/2})\) in suitable operator norms. Approximations for the resolvent \(B_\varepsilon ^{-1}\) have been already obtained by T.A. Suslina. So, we rewrite hyperbolic equation as a system for the vector with components \(\mathbf{u}_\varepsilon \) and \(\partial _t\mathbf{u}_\varepsilon\), and consider the corresponding unitary group. For this group, we adapt the proof of the Trotter-Kato theorem by introduction of some correction term and derive hyperbolic results from elliptic ones.

DOI 10.1134/S106192082304012X

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Journal of Mathematical Physics
Russian Journal of Mathematical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
14.30%
发文量
30
审稿时长
>12 weeks
期刊介绍: Russian Journal of Mathematical Physics is a peer-reviewed periodical that deals with the full range of topics subsumed by that discipline, which lies at the foundation of much of contemporary science. Thus, in addition to mathematical physics per se, the journal coverage includes, but is not limited to, functional analysis, linear and nonlinear partial differential equations, algebras, quantization, quantum field theory, modern differential and algebraic geometry and topology, representations of Lie groups, calculus of variations, asymptotic methods, random process theory, dynamical systems, and control theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信