数据中心环境中铜腐蚀的机理建模

IF 6.1 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Rui Zhang, Jianshun Zhang, Roger Schmidt, Jeremy L. Gilbert
{"title":"数据中心环境中铜腐蚀的机理建模","authors":"Rui Zhang, Jianshun Zhang, Roger Schmidt, Jeremy L. Gilbert","doi":"10.1007/s12273-023-1088-z","DOIUrl":null,"url":null,"abstract":"<p>Air-side economizers are increasingly used to take advantage of “free-cooling” in data centers with the intent of reducing the carbon footprint of buildings. However, they can introduce outdoor pollutants to indoor environment of data centers and cause corrosion damage to the information technology equipment. To evaluate the reliability of information technology equipment under various thermal and air-pollution conditions, a mechanistic model based on multi-ion transport and chemical reactions was developed. The model was used to predict Cu corrosion caused by Cl2-containing pollutant mixtures. It also accounted for the effects of temperature (25 °C and 28 °C), relative humidity (50%, 75%, and 95%), and synergism. It also identified higher air temperature as a corrosion barrier and higher relative humidity as a corrosion accelerator, which agreed well with the experimental results. The average root mean square error of the prediction was 13.7 Å. The model can be used to evaluate the thermal guideline for data centers design and operation when Cl2 is present based on pre-established acceptable risk of corrosion in data centers’ environment.</p>","PeriodicalId":49226,"journal":{"name":"Building Simulation","volume":"75 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanistic modeling of copper corrosions in data center environments\",\"authors\":\"Rui Zhang, Jianshun Zhang, Roger Schmidt, Jeremy L. Gilbert\",\"doi\":\"10.1007/s12273-023-1088-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Air-side economizers are increasingly used to take advantage of “free-cooling” in data centers with the intent of reducing the carbon footprint of buildings. However, they can introduce outdoor pollutants to indoor environment of data centers and cause corrosion damage to the information technology equipment. To evaluate the reliability of information technology equipment under various thermal and air-pollution conditions, a mechanistic model based on multi-ion transport and chemical reactions was developed. The model was used to predict Cu corrosion caused by Cl2-containing pollutant mixtures. It also accounted for the effects of temperature (25 °C and 28 °C), relative humidity (50%, 75%, and 95%), and synergism. It also identified higher air temperature as a corrosion barrier and higher relative humidity as a corrosion accelerator, which agreed well with the experimental results. The average root mean square error of the prediction was 13.7 Å. The model can be used to evaluate the thermal guideline for data centers design and operation when Cl2 is present based on pre-established acceptable risk of corrosion in data centers’ environment.</p>\",\"PeriodicalId\":49226,\"journal\":{\"name\":\"Building Simulation\",\"volume\":\"75 1\",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2023-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Building Simulation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12273-023-1088-z\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Building Simulation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12273-023-1088-z","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

空气侧节能器越来越多地被用于利用数据中心的 "自由冷却",以减少建筑物的碳足迹。然而,它们会将室外污染物引入数据中心的室内环境,并对信息技术设备造成腐蚀损害。为了评估信息技术设备在各种热和空气污染条件下的可靠性,我们开发了一个基于多离子传输和化学反应的机理模型。该模型用于预测含 Cl2 的污染物混合物对铜的腐蚀。该模型还考虑了温度(25 °C 和 28 °C)、相对湿度(50%、75% 和 95%)和协同作用的影响。它还确定较高的空气温度是腐蚀屏障,而较高的相对湿度是腐蚀加速器,这与实验结果完全吻合。预测的平均均方根误差为 13.7 Å。该模型可用于评估数据中心设计和运行的热准则,当数据中心环境中存在 Cl2 时,该准则以预先确定的可接受腐蚀风险为基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Mechanistic modeling of copper corrosions in data center environments

Mechanistic modeling of copper corrosions in data center environments

Air-side economizers are increasingly used to take advantage of “free-cooling” in data centers with the intent of reducing the carbon footprint of buildings. However, they can introduce outdoor pollutants to indoor environment of data centers and cause corrosion damage to the information technology equipment. To evaluate the reliability of information technology equipment under various thermal and air-pollution conditions, a mechanistic model based on multi-ion transport and chemical reactions was developed. The model was used to predict Cu corrosion caused by Cl2-containing pollutant mixtures. It also accounted for the effects of temperature (25 °C and 28 °C), relative humidity (50%, 75%, and 95%), and synergism. It also identified higher air temperature as a corrosion barrier and higher relative humidity as a corrosion accelerator, which agreed well with the experimental results. The average root mean square error of the prediction was 13.7 Å. The model can be used to evaluate the thermal guideline for data centers design and operation when Cl2 is present based on pre-established acceptable risk of corrosion in data centers’ environment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Building Simulation
Building Simulation THERMODYNAMICS-CONSTRUCTION & BUILDING TECHNOLOGY
CiteScore
10.20
自引率
16.40%
发文量
0
审稿时长
>12 weeks
期刊介绍: Building Simulation: An International Journal publishes original, high quality, peer-reviewed research papers and review articles dealing with modeling and simulation of buildings including their systems. The goal is to promote the field of building science and technology to such a level that modeling will eventually be used in every aspect of building construction as a routine instead of an exception. Of particular interest are papers that reflect recent developments and applications of modeling tools and their impact on advances of building science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信