板结构对混合支腿系统行为分析的影响

Neethu Elizabeth John, Kiran Kamath
{"title":"板结构对混合支腿系统行为分析的影响","authors":"Neethu Elizabeth John, Kiran Kamath","doi":"10.1002/tal.2080","DOIUrl":null,"url":null,"abstract":"Outriggers are internal structural systems used to enhance the stiffness and strength of high-rise structures. This research investigates the efficacy of a hybrid outrigger system (HOS) which consists of one conventional and one virtual outrigger at two distinct floor levels in high-rise RCC buildings. A non-dimensional quantity, ϒ, defined as the relative stiffness ratio between the core and the diaphragm is used to describe variations in the stiffness of the building's core, stiffness of floor diaphragm, breadth, and height of the structure, in the behavioral analysis of the HOS. To investigate the efficacy and optimum locations of the hybrid outriggers, static and dynamic analysis are carried out on models with four-story heights of 140, 210, 280, and 350 m under static wind loading, uniform wind loading, equivalent static earthquake loading, and dynamic earthquake loading. Results are assessed based on the responses from roof displacement (Disp<sub>top</sub>), base bending moment, roof acceleration (Acc<sub>top</sub>), fundamental period, and absolute maximum inter-story drift ratio (ISD<sub>abs.max</sub>). Based on the minimum responses of the aforementioned dependent parameters under wind and earthquake excitations, the corresponding optimum locations of hybrid outriggers are investigated. To investigate the impact of the slab on the functionality of the HOS, the behavior of shell stress variation in the tension and compression side of the slab at the outrigger floor level and the force transmission through the column at the outrigger level is analyzed. Also, the optimum location of the hybrid outriggers based on the ideal performance index (Ideal<sub>PI</sub>) is investigated. Ideal<sub>PI</sub> is defined as a parameter that considers the combined response of Disp<sub>top</sub>, Acc<sub>top</sub>, and ISD<sub>abs.max</sub> and the criteria required for the structure under wind and seismic loads. From the behavioral analysis results, it is found that an increase in the stiffness of the slab showed an improved performance of the HOS compared to an increase in the stiffness of the core, and HOS performance can be maximized by increasing both thickness of the slab and outrigger arm length. The findings of the optimum location analysis could serve as a guide for structural engineers when selecting suitable positions for hybrid outriggers in high-rise structures.","PeriodicalId":501238,"journal":{"name":"The Structural Design of Tall and Special Buildings","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of slab structure on the behavioral analysis of hybrid outrigger system\",\"authors\":\"Neethu Elizabeth John, Kiran Kamath\",\"doi\":\"10.1002/tal.2080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Outriggers are internal structural systems used to enhance the stiffness and strength of high-rise structures. This research investigates the efficacy of a hybrid outrigger system (HOS) which consists of one conventional and one virtual outrigger at two distinct floor levels in high-rise RCC buildings. A non-dimensional quantity, ϒ, defined as the relative stiffness ratio between the core and the diaphragm is used to describe variations in the stiffness of the building's core, stiffness of floor diaphragm, breadth, and height of the structure, in the behavioral analysis of the HOS. To investigate the efficacy and optimum locations of the hybrid outriggers, static and dynamic analysis are carried out on models with four-story heights of 140, 210, 280, and 350 m under static wind loading, uniform wind loading, equivalent static earthquake loading, and dynamic earthquake loading. Results are assessed based on the responses from roof displacement (Disp<sub>top</sub>), base bending moment, roof acceleration (Acc<sub>top</sub>), fundamental period, and absolute maximum inter-story drift ratio (ISD<sub>abs.max</sub>). Based on the minimum responses of the aforementioned dependent parameters under wind and earthquake excitations, the corresponding optimum locations of hybrid outriggers are investigated. To investigate the impact of the slab on the functionality of the HOS, the behavior of shell stress variation in the tension and compression side of the slab at the outrigger floor level and the force transmission through the column at the outrigger level is analyzed. Also, the optimum location of the hybrid outriggers based on the ideal performance index (Ideal<sub>PI</sub>) is investigated. Ideal<sub>PI</sub> is defined as a parameter that considers the combined response of Disp<sub>top</sub>, Acc<sub>top</sub>, and ISD<sub>abs.max</sub> and the criteria required for the structure under wind and seismic loads. From the behavioral analysis results, it is found that an increase in the stiffness of the slab showed an improved performance of the HOS compared to an increase in the stiffness of the core, and HOS performance can be maximized by increasing both thickness of the slab and outrigger arm length. The findings of the optimum location analysis could serve as a guide for structural engineers when selecting suitable positions for hybrid outriggers in high-rise structures.\",\"PeriodicalId\":501238,\"journal\":{\"name\":\"The Structural Design of Tall and Special Buildings\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Structural Design of Tall and Special Buildings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/tal.2080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Structural Design of Tall and Special Buildings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/tal.2080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

支腿是一种内部结构系统,用于增强高层建筑结构的刚度和强度。本研究探讨了混合支腿系统(HOS)的功效,该系统由一个传统支腿和一个虚拟支腿组成,分别位于高层 RCC 建筑的两个不同楼层。在 HOS 的行为分析中,使用了一个定义为核心筒和横隔墙之间相对刚度比的非尺寸量 ϒ,来描述建筑物核心筒刚度、楼层横隔墙刚度、宽度和结构高度的变化。为了研究混合支腿的功效和最佳位置,在静态风荷载、均匀风荷载、等效静态地震荷载和动态地震荷载下,对高度分别为 140 米、210 米、280 米和 350 米的四层模型进行了静态和动态分析。评估结果基于屋顶位移(Disptop)、基础弯矩、屋顶加速度(Acctop)、基本周期和绝对最大层间漂移比(ISDabs.max)的响应。根据上述因变参数在风和地震激励下的最小响应,研究了混合支腿的相应最佳位置。为了研究楼板对 HOS 功能的影响,分析了支腿层楼板拉伸侧和压缩侧的壳体应力变化行为,以及支腿层通过柱子的力传递行为。此外,还研究了基于理想性能指数(IdealPI)的混合支腿最佳位置。IdealPI 被定义为一个参数,它考虑了 Disptop、Acctop 和 ISDabs.max 的综合响应,以及结构在风荷载和地震荷载下所需的标准。从行为分析结果中可以发现,与增加核心筒的刚度相比,增加楼板的刚度可以改善 HOS 的性能,而且通过增加楼板厚度和支腿臂长可以最大限度地提高 HOS 的性能。最佳位置分析的结果可为结构工程师在高层建筑中选择混合支腿的合适位置提供指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Influence of slab structure on the behavioral analysis of hybrid outrigger system
Outriggers are internal structural systems used to enhance the stiffness and strength of high-rise structures. This research investigates the efficacy of a hybrid outrigger system (HOS) which consists of one conventional and one virtual outrigger at two distinct floor levels in high-rise RCC buildings. A non-dimensional quantity, ϒ, defined as the relative stiffness ratio between the core and the diaphragm is used to describe variations in the stiffness of the building's core, stiffness of floor diaphragm, breadth, and height of the structure, in the behavioral analysis of the HOS. To investigate the efficacy and optimum locations of the hybrid outriggers, static and dynamic analysis are carried out on models with four-story heights of 140, 210, 280, and 350 m under static wind loading, uniform wind loading, equivalent static earthquake loading, and dynamic earthquake loading. Results are assessed based on the responses from roof displacement (Disptop), base bending moment, roof acceleration (Acctop), fundamental period, and absolute maximum inter-story drift ratio (ISDabs.max). Based on the minimum responses of the aforementioned dependent parameters under wind and earthquake excitations, the corresponding optimum locations of hybrid outriggers are investigated. To investigate the impact of the slab on the functionality of the HOS, the behavior of shell stress variation in the tension and compression side of the slab at the outrigger floor level and the force transmission through the column at the outrigger level is analyzed. Also, the optimum location of the hybrid outriggers based on the ideal performance index (IdealPI) is investigated. IdealPI is defined as a parameter that considers the combined response of Disptop, Acctop, and ISDabs.max and the criteria required for the structure under wind and seismic loads. From the behavioral analysis results, it is found that an increase in the stiffness of the slab showed an improved performance of the HOS compared to an increase in the stiffness of the core, and HOS performance can be maximized by increasing both thickness of the slab and outrigger arm length. The findings of the optimum location analysis could serve as a guide for structural engineers when selecting suitable positions for hybrid outriggers in high-rise structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信