{"title":"手术机器人中的软致动器:最新进展综述","authors":"","doi":"10.1007/s11370-023-00506-1","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Soft surgical robots represent a groundbreaking innovation in the field of medical technology. These robots utilize soft, deformable materials to navigate and interact with delicate structures inside the human body, such as organs and blood vessels, with enhanced safety. They have the potential to transform healthcare by expanding the capabilities of minimally invasive surgeries, targeted drug delivery, and precise diagnostics. They can also reduce patient discomfort, recovery times, and the risk of complications, infections, and accidental injuries. The key to the functionality of soft surgical robots lies in their actuation mechanisms. Various actuation methods have been developed, including pneumatic, magnetic, tendon-driven, smart materials (like shape memory alloys, dielectric elastomer actuators, and ionic polymer–metal composites), and hybrid combinations of these mechanisms. Each actuator type offers unique advantages and challenges, making the selection of the right actuation solution a complex task. This review paper aims to provide a comprehensive understanding of these soft actuation mechanisms and their applications in surgical robotics. It delves into the current state of the art in various applications, from endoscopes and catheters to cardiac support devices, bioinspired inchworm robots, and more. While significant progress has been made in the field of soft actuators for surgical robotics, this paper identifies several challenges that must still be overcome to effectively apply these innovations in real-life surgical procedures on human patients.</p>","PeriodicalId":48813,"journal":{"name":"Intelligent Service Robotics","volume":"2 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Soft actuators in surgical robotics: a state-of-the-art review\",\"authors\":\"\",\"doi\":\"10.1007/s11370-023-00506-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>Soft surgical robots represent a groundbreaking innovation in the field of medical technology. These robots utilize soft, deformable materials to navigate and interact with delicate structures inside the human body, such as organs and blood vessels, with enhanced safety. They have the potential to transform healthcare by expanding the capabilities of minimally invasive surgeries, targeted drug delivery, and precise diagnostics. They can also reduce patient discomfort, recovery times, and the risk of complications, infections, and accidental injuries. The key to the functionality of soft surgical robots lies in their actuation mechanisms. Various actuation methods have been developed, including pneumatic, magnetic, tendon-driven, smart materials (like shape memory alloys, dielectric elastomer actuators, and ionic polymer–metal composites), and hybrid combinations of these mechanisms. Each actuator type offers unique advantages and challenges, making the selection of the right actuation solution a complex task. This review paper aims to provide a comprehensive understanding of these soft actuation mechanisms and their applications in surgical robotics. It delves into the current state of the art in various applications, from endoscopes and catheters to cardiac support devices, bioinspired inchworm robots, and more. While significant progress has been made in the field of soft actuators for surgical robotics, this paper identifies several challenges that must still be overcome to effectively apply these innovations in real-life surgical procedures on human patients.</p>\",\"PeriodicalId\":48813,\"journal\":{\"name\":\"Intelligent Service Robotics\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligent Service Robotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11370-023-00506-1\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Service Robotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11370-023-00506-1","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ROBOTICS","Score":null,"Total":0}
Soft actuators in surgical robotics: a state-of-the-art review
Abstract
Soft surgical robots represent a groundbreaking innovation in the field of medical technology. These robots utilize soft, deformable materials to navigate and interact with delicate structures inside the human body, such as organs and blood vessels, with enhanced safety. They have the potential to transform healthcare by expanding the capabilities of minimally invasive surgeries, targeted drug delivery, and precise diagnostics. They can also reduce patient discomfort, recovery times, and the risk of complications, infections, and accidental injuries. The key to the functionality of soft surgical robots lies in their actuation mechanisms. Various actuation methods have been developed, including pneumatic, magnetic, tendon-driven, smart materials (like shape memory alloys, dielectric elastomer actuators, and ionic polymer–metal composites), and hybrid combinations of these mechanisms. Each actuator type offers unique advantages and challenges, making the selection of the right actuation solution a complex task. This review paper aims to provide a comprehensive understanding of these soft actuation mechanisms and their applications in surgical robotics. It delves into the current state of the art in various applications, from endoscopes and catheters to cardiac support devices, bioinspired inchworm robots, and more. While significant progress has been made in the field of soft actuators for surgical robotics, this paper identifies several challenges that must still be overcome to effectively apply these innovations in real-life surgical procedures on human patients.
期刊介绍:
The journal directs special attention to the emerging significance of integrating robotics with information technology and cognitive science (such as ubiquitous and adaptive computing,information integration in a distributed environment, and cognitive modelling for human-robot interaction), which spurs innovation toward a new multi-dimensional robotic service to humans. The journal intends to capture and archive this emerging yet significant advancement in the field of intelligent service robotics. The journal will publish original papers of innovative ideas and concepts, new discoveries and improvements, as well as novel applications and business models which are related to the field of intelligent service robotics described above and are proven to be of high quality. The areas that the Journal will cover include, but are not limited to: Intelligent robots serving humans in daily life or in a hazardous environment, such as home or personal service robots, entertainment robots, education robots, medical robots, healthcare and rehabilitation robots, and rescue robots (Service Robotics); Intelligent robotic functions in the form of embedded systems for applications to, for example, intelligent space, intelligent vehicles and transportation systems, intelligent manufacturing systems, and intelligent medical facilities (Embedded Robotics); The integration of robotics with network technologies, generating such services and solutions as distributed robots, distance robotic education-aides, and virtual laboratories or museums (Networked Robotics).