S. M. Pershin, A. F. Bunkin, V. A. Zavozin, M. Ya. Grishin, V. S. Makarov, P. A. Titovets, M. O. Fedyuk
{"title":"水下激光雷达:强散射介质中的遥感","authors":"S. M. Pershin, A. F. Bunkin, V. A. Zavozin, M. Ya. Grishin, V. S. Makarov, P. A. Titovets, M. O. Fedyuk","doi":"10.3103/S1541308X23060080","DOIUrl":null,"url":null,"abstract":"<p>A lidar backscattering signal from an opaque target object, passed through a 9-m water layer with scattering meshes on the laser beam path, has been detected (for the first time, to the best of our knowledge) when sensing by pulses with eye-safe radiation energy density (~1 μJ/cm<sup>2</sup>). The new principle of laser sensing makes it possible to measure the position of meshes on the lidar path, in contrast to conventional laser rangefinders, which measure the distance to only the first target. The lidar has been developed based on a pulsed diode-pumped Nd<sup>3+</sup>:YAG laser (532 nm, 3 ns, 2 µJ/pulse, pulse repetition rate 4 kHz) and gated single-photon avalanche photodiode (SPAD) with a gain up to ~10<sup>6</sup>, serving as a detector. The large gain of the detector and suppression of its noise by gating ensured a signal-to-noise ratio of ≈35 for the target signal, which provides an estimate of underwater sensing range up to 30 m, according to the 3σ detection criterion. Compact lidars based on diode lasers (~1 µJ/pulse) with a radiation wavelength (~450 nm) in the spectral range of minimum losses in water and the increase in the safety of manned and unmanned underwater vehicles at early detection of nets (invisible for sonars) by a lidar are discussed.</p>","PeriodicalId":732,"journal":{"name":"Physics of Wave Phenomena","volume":"31 6","pages":"406 - 411"},"PeriodicalIF":1.1000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Underwater Lidar: Remote Sensing in Strongly Scattering Media\",\"authors\":\"S. M. Pershin, A. F. Bunkin, V. A. Zavozin, M. Ya. Grishin, V. S. Makarov, P. A. Titovets, M. O. Fedyuk\",\"doi\":\"10.3103/S1541308X23060080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A lidar backscattering signal from an opaque target object, passed through a 9-m water layer with scattering meshes on the laser beam path, has been detected (for the first time, to the best of our knowledge) when sensing by pulses with eye-safe radiation energy density (~1 μJ/cm<sup>2</sup>). The new principle of laser sensing makes it possible to measure the position of meshes on the lidar path, in contrast to conventional laser rangefinders, which measure the distance to only the first target. The lidar has been developed based on a pulsed diode-pumped Nd<sup>3+</sup>:YAG laser (532 nm, 3 ns, 2 µJ/pulse, pulse repetition rate 4 kHz) and gated single-photon avalanche photodiode (SPAD) with a gain up to ~10<sup>6</sup>, serving as a detector. The large gain of the detector and suppression of its noise by gating ensured a signal-to-noise ratio of ≈35 for the target signal, which provides an estimate of underwater sensing range up to 30 m, according to the 3σ detection criterion. Compact lidars based on diode lasers (~1 µJ/pulse) with a radiation wavelength (~450 nm) in the spectral range of minimum losses in water and the increase in the safety of manned and unmanned underwater vehicles at early detection of nets (invisible for sonars) by a lidar are discussed.</p>\",\"PeriodicalId\":732,\"journal\":{\"name\":\"Physics of Wave Phenomena\",\"volume\":\"31 6\",\"pages\":\"406 - 411\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of Wave Phenomena\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1541308X23060080\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Wave Phenomena","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.3103/S1541308X23060080","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Underwater Lidar: Remote Sensing in Strongly Scattering Media
A lidar backscattering signal from an opaque target object, passed through a 9-m water layer with scattering meshes on the laser beam path, has been detected (for the first time, to the best of our knowledge) when sensing by pulses with eye-safe radiation energy density (~1 μJ/cm2). The new principle of laser sensing makes it possible to measure the position of meshes on the lidar path, in contrast to conventional laser rangefinders, which measure the distance to only the first target. The lidar has been developed based on a pulsed diode-pumped Nd3+:YAG laser (532 nm, 3 ns, 2 µJ/pulse, pulse repetition rate 4 kHz) and gated single-photon avalanche photodiode (SPAD) with a gain up to ~106, serving as a detector. The large gain of the detector and suppression of its noise by gating ensured a signal-to-noise ratio of ≈35 for the target signal, which provides an estimate of underwater sensing range up to 30 m, according to the 3σ detection criterion. Compact lidars based on diode lasers (~1 µJ/pulse) with a radiation wavelength (~450 nm) in the spectral range of minimum losses in water and the increase in the safety of manned and unmanned underwater vehicles at early detection of nets (invisible for sonars) by a lidar are discussed.
期刊介绍:
Physics of Wave Phenomena publishes original contributions in general and nonlinear wave theory, original experimental results in optics, acoustics and radiophysics. The fields of physics represented in this journal include nonlinear optics, acoustics, and radiophysics; nonlinear effects of any nature including nonlinear dynamics and chaos; phase transitions including light- and sound-induced; laser physics; optical and other spectroscopies; new instruments, methods, and measurements of wave and oscillatory processes; remote sensing of waves in natural media; wave interactions in biophysics, econophysics and other cross-disciplinary areas.