超音速气体流动中的优化控制湍流边界层

Q3 Mathematics
K. G. Garaev, I. R. Mukhametzyanov
{"title":"超音速气体流动中的优化控制湍流边界层","authors":"K. G. Garaev, I. R. Mukhametzyanov","doi":"10.1134/s2070048223070049","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>A variational problem for a conditional extremum of the Mayer type on the construction of the distribution law of the normal component of the velocity of injection of a cooled gas into a turbulent boundary layer under a supersonic flow regime that provides the minimum value of the convective heat flux transmitted from the hot gas to the streamlined surface is considered. The isoperimetric condition is the power of the injection control system, calculated taking into account Darcy’s filtration law. To solve the optimal problem, we use the first integral for the conjugate system with respect to Lagrange multipliers, obtained earlier by the authors using the classical theorem of E. Noether on invariant variational problems and the Lie-Ovsyannikov infinitesimal apparatus. A.A. Dorodnitsyn’s method of generalized integral relations, which has proven itself well in calculating the characteristics of boundary layers under various flow regimes, is used for the calculations. A computational experiment conducted for the case of a flow around a sphere shows the effectiveness of the optimal control law found in comparison with a uniform injection: the gain in the value of the minimized functional is 16.8%. The novelty of the study lies in the development of a method for solving the variational problem using the first integral for the conjugate system, as well as the Dorodnitsyn’s method of generalized integral relations. The scientific significance of the study lies in the development of the theory of an optimally controlled boundary layer under a turbulent flow regime in supersonic gas flows. The results obtained may be of interest in the design of systems for the active thermal protection of surfaces in high-velocity gas flows.</p>","PeriodicalId":38050,"journal":{"name":"Mathematical Models and Computer Simulations","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimally Controlled Turbulent Boundary Layers in Supersonic Gas Flows\",\"authors\":\"K. G. Garaev, I. R. Mukhametzyanov\",\"doi\":\"10.1134/s2070048223070049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>A variational problem for a conditional extremum of the Mayer type on the construction of the distribution law of the normal component of the velocity of injection of a cooled gas into a turbulent boundary layer under a supersonic flow regime that provides the minimum value of the convective heat flux transmitted from the hot gas to the streamlined surface is considered. The isoperimetric condition is the power of the injection control system, calculated taking into account Darcy’s filtration law. To solve the optimal problem, we use the first integral for the conjugate system with respect to Lagrange multipliers, obtained earlier by the authors using the classical theorem of E. Noether on invariant variational problems and the Lie-Ovsyannikov infinitesimal apparatus. A.A. Dorodnitsyn’s method of generalized integral relations, which has proven itself well in calculating the characteristics of boundary layers under various flow regimes, is used for the calculations. A computational experiment conducted for the case of a flow around a sphere shows the effectiveness of the optimal control law found in comparison with a uniform injection: the gain in the value of the minimized functional is 16.8%. The novelty of the study lies in the development of a method for solving the variational problem using the first integral for the conjugate system, as well as the Dorodnitsyn’s method of generalized integral relations. The scientific significance of the study lies in the development of the theory of an optimally controlled boundary layer under a turbulent flow regime in supersonic gas flows. The results obtained may be of interest in the design of systems for the active thermal protection of surfaces in high-velocity gas flows.</p>\",\"PeriodicalId\":38050,\"journal\":{\"name\":\"Mathematical Models and Computer Simulations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Models and Computer Simulations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1134/s2070048223070049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Models and Computer Simulations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1134/s2070048223070049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

摘要 研究了在超音速流动状态下,冷却气体注入湍流边界层的速度法向分量分布规律的构建问题,该问题是一个梅耶型条件极值的变分问题,它提供了从热气体传输到流线型表面的对流热通量的最小值。等周条件是喷射控制系统的功率,计算时考虑了达西过滤定律。为了解决最优问题,我们使用了共轭系统关于拉格朗日乘法器的第一积分,这是作者早先利用 E. Noether 关于不变变异问题的经典定理和 Lie-Ovsyannikov 无穷小装置获得的。计算中使用了 A.A. Dorodnitsyn 的广义积分关系方法,该方法在计算各种流动状态下的边界层特性时证明了自己的优越性。对球体周围的流动进行的计算实验表明,与均匀注入法相比,所发现的最佳控制法非常有效:最小化函数值的增益为 16.8%。该研究的新颖之处在于开发了一种利用共轭体系的第一积分以及多罗尼琴的广义积分关系法来解决变分问题的方法。这项研究的科学意义在于发展了超音速气体流动中湍流状态下的最佳控制边界层理论。获得的结果可能对高速气流中表面主动热保护系统的设计有意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Optimally Controlled Turbulent Boundary Layers in Supersonic Gas Flows

Optimally Controlled Turbulent Boundary Layers in Supersonic Gas Flows

Abstract

A variational problem for a conditional extremum of the Mayer type on the construction of the distribution law of the normal component of the velocity of injection of a cooled gas into a turbulent boundary layer under a supersonic flow regime that provides the minimum value of the convective heat flux transmitted from the hot gas to the streamlined surface is considered. The isoperimetric condition is the power of the injection control system, calculated taking into account Darcy’s filtration law. To solve the optimal problem, we use the first integral for the conjugate system with respect to Lagrange multipliers, obtained earlier by the authors using the classical theorem of E. Noether on invariant variational problems and the Lie-Ovsyannikov infinitesimal apparatus. A.A. Dorodnitsyn’s method of generalized integral relations, which has proven itself well in calculating the characteristics of boundary layers under various flow regimes, is used for the calculations. A computational experiment conducted for the case of a flow around a sphere shows the effectiveness of the optimal control law found in comparison with a uniform injection: the gain in the value of the minimized functional is 16.8%. The novelty of the study lies in the development of a method for solving the variational problem using the first integral for the conjugate system, as well as the Dorodnitsyn’s method of generalized integral relations. The scientific significance of the study lies in the development of the theory of an optimally controlled boundary layer under a turbulent flow regime in supersonic gas flows. The results obtained may be of interest in the design of systems for the active thermal protection of surfaces in high-velocity gas flows.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Models and Computer Simulations
Mathematical Models and Computer Simulations Mathematics-Computational Mathematics
CiteScore
1.20
自引率
0.00%
发文量
99
期刊介绍: Mathematical Models and Computer Simulations  is a journal that publishes high-quality and original articles at the forefront of development of mathematical models, numerical methods, computer-assisted studies in science and engineering with the potential for impact across the sciences, and construction of massively parallel codes for supercomputers. The problem-oriented papers are devoted to various problems including industrial mathematics, numerical simulation in multiscale and multiphysics, materials science, chemistry, economics, social, and life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信