{"title":"水泥中石膏含量对不同温度下水泥与无碱促进剂适应性的影响研究","authors":"Qin Wang, Zhixiang Guo, Fanchao Zeng, Hongwei Wang, Huaixia Qin","doi":"10.1680/jadcr.23.00165","DOIUrl":null,"url":null,"abstract":"The setting time and early strength of shotcrete is greatly affected by the gypsum content of cement. In this paper, setting time and compressive strength, and microscopic methods such as XRD quantitative analysis, thermogravimetric analysis and scanning electron microscope observation were used to determine the effects of changes in gypsum content on the hydration and mechanical properties of cement mixed with accelerator at different temperatures. The results showed that an increase in the gypsum content of cement promoted the formation of ettringite (AFt) and decreased the setting times of cement pastes at 0°C, 20°C and 40°C. Mortar compressive strength test revealed that after curing at 0°C, 20 °C and 40°C, the highest compressive strength was exhibited with final molar C<sub>3</sub>A/SO<sub>3</sub> ratio of 0.84, 0.84 and 1.18, respectively. The mechanical properties of hardened cement pastes were adversely affected by C<sub>3</sub>A/SO<sub>3</sub> ratios that were too high or too low. When the C<sub>3</sub>A/SO<sub>3</sub> ratio was too high, which facilitated conversion of AFt to monosulphate(AFm) and slowed C<sub>3</sub>S hydration. Conversely, when the C<sub>3</sub>A/SO<sub>3</sub> ratio was too low, which enabled large numbers of AFt to occupy the space where C-S-H gels was formed, resulting in decalcification of C-S-H gels.","PeriodicalId":7299,"journal":{"name":"Advances in Cement Research","volume":"10 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the effect of gypsum content in cement on the adaptability between cement and alkali-free accelerator at different temperatures\",\"authors\":\"Qin Wang, Zhixiang Guo, Fanchao Zeng, Hongwei Wang, Huaixia Qin\",\"doi\":\"10.1680/jadcr.23.00165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The setting time and early strength of shotcrete is greatly affected by the gypsum content of cement. In this paper, setting time and compressive strength, and microscopic methods such as XRD quantitative analysis, thermogravimetric analysis and scanning electron microscope observation were used to determine the effects of changes in gypsum content on the hydration and mechanical properties of cement mixed with accelerator at different temperatures. The results showed that an increase in the gypsum content of cement promoted the formation of ettringite (AFt) and decreased the setting times of cement pastes at 0°C, 20°C and 40°C. Mortar compressive strength test revealed that after curing at 0°C, 20 °C and 40°C, the highest compressive strength was exhibited with final molar C<sub>3</sub>A/SO<sub>3</sub> ratio of 0.84, 0.84 and 1.18, respectively. The mechanical properties of hardened cement pastes were adversely affected by C<sub>3</sub>A/SO<sub>3</sub> ratios that were too high or too low. When the C<sub>3</sub>A/SO<sub>3</sub> ratio was too high, which facilitated conversion of AFt to monosulphate(AFm) and slowed C<sub>3</sub>S hydration. Conversely, when the C<sub>3</sub>A/SO<sub>3</sub> ratio was too low, which enabled large numbers of AFt to occupy the space where C-S-H gels was formed, resulting in decalcification of C-S-H gels.\",\"PeriodicalId\":7299,\"journal\":{\"name\":\"Advances in Cement Research\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Cement Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1680/jadcr.23.00165\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Cement Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1680/jadcr.23.00165","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Study on the effect of gypsum content in cement on the adaptability between cement and alkali-free accelerator at different temperatures
The setting time and early strength of shotcrete is greatly affected by the gypsum content of cement. In this paper, setting time and compressive strength, and microscopic methods such as XRD quantitative analysis, thermogravimetric analysis and scanning electron microscope observation were used to determine the effects of changes in gypsum content on the hydration and mechanical properties of cement mixed with accelerator at different temperatures. The results showed that an increase in the gypsum content of cement promoted the formation of ettringite (AFt) and decreased the setting times of cement pastes at 0°C, 20°C and 40°C. Mortar compressive strength test revealed that after curing at 0°C, 20 °C and 40°C, the highest compressive strength was exhibited with final molar C3A/SO3 ratio of 0.84, 0.84 and 1.18, respectively. The mechanical properties of hardened cement pastes were adversely affected by C3A/SO3 ratios that were too high or too low. When the C3A/SO3 ratio was too high, which facilitated conversion of AFt to monosulphate(AFm) and slowed C3S hydration. Conversely, when the C3A/SO3 ratio was too low, which enabled large numbers of AFt to occupy the space where C-S-H gels was formed, resulting in decalcification of C-S-H gels.
期刊介绍:
Advances in Cement Research highlights the scientific ideas and innovations within the cutting-edge cement manufacture industry. It is a global journal with a scope encompassing cement manufacture and materials, properties and durability of cementitious materials and systems, hydration, interaction of cement with other materials, analysis and testing, special cements and applications.