挖掘图形的密钥

IF 2.7 3区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Morteza Alipourlangouri, Fei Chiang
{"title":"挖掘图形的密钥","authors":"Morteza Alipourlangouri,&nbsp;Fei Chiang","doi":"10.1016/j.datak.2023.102274","DOIUrl":null,"url":null,"abstract":"<div><p><span>Keys for graphs are a class of data quality rules that use topological and value constraints to uniquely identify entities in a data graph. They have been studied to support object identification, knowledge fusion, data deduplication, and social network reconciliation. Manual specification and discovery of graph keys is tedious and infeasible over large-scale graphs. To make </span><span><math><mi>GKeys</mi></math></span> useful in practice, we study the <span><math><mi>GKey</mi></math></span> discovery problem, and present <span><math><mi>GKMiner</mi></math></span>, an algorithm that mines keys over graphs. Our algorithm discovers keys in a graph via frequent subgraph expansion, and notably, identifies <em>recursive</em> keys, i.e., where the unique identification of an entity type is dependent upon the identification of another entity type. We introduce the key properties, <em>minimality</em> and <em>support</em>, which effectively help to reduce the space of candidate keys. <span><math><mi>GKMiner</mi></math></span><span> uses a set of auxillary structures to summarize an input graph, and to identify likely candidate keys for greater pruning efficiency and evaluation of the search space. Our evaluation shows that identifying and using recursive keys in entity linking, lead to improved accuracy, over keys found using existing graph key mining techniques.</span></p></div>","PeriodicalId":55184,"journal":{"name":"Data & Knowledge Engineering","volume":"150 ","pages":"Article 102274"},"PeriodicalIF":2.7000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mining Keys for Graphs\",\"authors\":\"Morteza Alipourlangouri,&nbsp;Fei Chiang\",\"doi\":\"10.1016/j.datak.2023.102274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Keys for graphs are a class of data quality rules that use topological and value constraints to uniquely identify entities in a data graph. They have been studied to support object identification, knowledge fusion, data deduplication, and social network reconciliation. Manual specification and discovery of graph keys is tedious and infeasible over large-scale graphs. To make </span><span><math><mi>GKeys</mi></math></span> useful in practice, we study the <span><math><mi>GKey</mi></math></span> discovery problem, and present <span><math><mi>GKMiner</mi></math></span>, an algorithm that mines keys over graphs. Our algorithm discovers keys in a graph via frequent subgraph expansion, and notably, identifies <em>recursive</em> keys, i.e., where the unique identification of an entity type is dependent upon the identification of another entity type. We introduce the key properties, <em>minimality</em> and <em>support</em>, which effectively help to reduce the space of candidate keys. <span><math><mi>GKMiner</mi></math></span><span> uses a set of auxillary structures to summarize an input graph, and to identify likely candidate keys for greater pruning efficiency and evaluation of the search space. Our evaluation shows that identifying and using recursive keys in entity linking, lead to improved accuracy, over keys found using existing graph key mining techniques.</span></p></div>\",\"PeriodicalId\":55184,\"journal\":{\"name\":\"Data & Knowledge Engineering\",\"volume\":\"150 \",\"pages\":\"Article 102274\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data & Knowledge Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169023X23001349\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data & Knowledge Engineering","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169023X23001349","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

图键是一类数据质量规则,它使用拓扑和值约束来唯一识别数据图中的实体。对它们的研究支持对象识别、知识融合、重复数据删除和社交网络调节。在大规模图中,手动规范和发现图键既繁琐又不可行。为了让 GKeys 在实践中发挥作用,我们研究了 GKey 发现问题,并提出了 GKMiner 算法,这是一种在图上挖掘密钥的算法。我们的算法通过频繁子图扩展发现图中的密钥,特别是识别递归密钥,即一个实体类型的唯一识别依赖于另一个实体类型的识别。我们引入了密钥属性--最小性和支持性,它们能有效帮助减少候选密钥的空间。GKMiner 使用一组辅助结构来概括输入图,并识别可能的候选键,以提高剪枝效率并评估搜索空间。我们的评估结果表明,在实体链接中识别和使用递归键,比使用现有图键挖掘技术找到的键更准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mining Keys for Graphs

Keys for graphs are a class of data quality rules that use topological and value constraints to uniquely identify entities in a data graph. They have been studied to support object identification, knowledge fusion, data deduplication, and social network reconciliation. Manual specification and discovery of graph keys is tedious and infeasible over large-scale graphs. To make GKeys useful in practice, we study the GKey discovery problem, and present GKMiner, an algorithm that mines keys over graphs. Our algorithm discovers keys in a graph via frequent subgraph expansion, and notably, identifies recursive keys, i.e., where the unique identification of an entity type is dependent upon the identification of another entity type. We introduce the key properties, minimality and support, which effectively help to reduce the space of candidate keys. GKMiner uses a set of auxillary structures to summarize an input graph, and to identify likely candidate keys for greater pruning efficiency and evaluation of the search space. Our evaluation shows that identifying and using recursive keys in entity linking, lead to improved accuracy, over keys found using existing graph key mining techniques.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Data & Knowledge Engineering
Data & Knowledge Engineering 工程技术-计算机:人工智能
CiteScore
5.00
自引率
0.00%
发文量
66
审稿时长
6 months
期刊介绍: Data & Knowledge Engineering (DKE) stimulates the exchange of ideas and interaction between these two related fields of interest. DKE reaches a world-wide audience of researchers, designers, managers and users. The major aim of the journal is to identify, investigate and analyze the underlying principles in the design and effective use of these systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信