关于多图的 $${A_{\!

IF 0.9 3区 数学 Q2 MATHEMATICS
Sasmita Barik, Sane Umesh Reddy
{"title":"关于多图的 $${A_{\\!","authors":"Sasmita Barik,&nbsp;Sane Umesh Reddy","doi":"10.1007/s00010-023-01020-6","DOIUrl":null,"url":null,"abstract":"<div><p>The complex adjacency matrix <span>\\({A_{\\!\\mathbb {C}}}(G)\\)</span> for a multidigraph <i>G</i> is introduced in Barik and Sahoo (AKCE Int J Graphs Comb 17(1):466–479, 2020). We study the rank of multidigraphs corresponding to the complex adjacency matrix and call it <span>\\({A_{\\!\\mathbb {C}}}\\)</span>-rank. It is known that a connected graph <i>G</i> has rank 2 if and only if <i>G</i> is a complete bipartite graph, and has rank 3 if and only if it is a complete tripartite graph (Cheng in Electron J Linear Algebra 16:60–67, 2007). We observe that these results hold as special cases for multidigraphs but are not sufficient. In this article, we characterize all multidigraphs with <span>\\({A_{\\!\\mathbb {C}}}\\)</span>-rank 2 and 3, respectively.</p></div>","PeriodicalId":55611,"journal":{"name":"Aequationes Mathematicae","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the \\\\({A_{\\\\!\\\\mathbb {C}}}\\\\)-rank of multidigraphs\",\"authors\":\"Sasmita Barik,&nbsp;Sane Umesh Reddy\",\"doi\":\"10.1007/s00010-023-01020-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The complex adjacency matrix <span>\\\\({A_{\\\\!\\\\mathbb {C}}}(G)\\\\)</span> for a multidigraph <i>G</i> is introduced in Barik and Sahoo (AKCE Int J Graphs Comb 17(1):466–479, 2020). We study the rank of multidigraphs corresponding to the complex adjacency matrix and call it <span>\\\\({A_{\\\\!\\\\mathbb {C}}}\\\\)</span>-rank. It is known that a connected graph <i>G</i> has rank 2 if and only if <i>G</i> is a complete bipartite graph, and has rank 3 if and only if it is a complete tripartite graph (Cheng in Electron J Linear Algebra 16:60–67, 2007). We observe that these results hold as special cases for multidigraphs but are not sufficient. In this article, we characterize all multidigraphs with <span>\\\\({A_{\\\\!\\\\mathbb {C}}}\\\\)</span>-rank 2 and 3, respectively.</p></div>\",\"PeriodicalId\":55611,\"journal\":{\"name\":\"Aequationes Mathematicae\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aequationes Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00010-023-01020-6\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aequationes Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00010-023-01020-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Barik 和 Sahoo(AKCE Int J Graphs Comb 17(1):466-479, 2020)介绍了多图 G 的复邻接矩阵 \({A_{/!\mathbb {C}}(G)\) 。)我们研究与复邻接矩阵相对应的多图的秩,并称之为 \({A_{\!\mathbb {C}}) -rank。众所周知,如果且仅如果连通图 G 是一个完整的二方图,那么它的秩为 2;如果且仅如果它是一个完整的三方图,那么它的秩为 3(Cheng 在 Electron J Linear Algebra 16:60-67, 2007 中)。我们注意到这些结果作为多图的特例是成立的,但并不充分。在本文中,我们将描述所有秩分别为 2 和 3 的多图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On the \({A_{\!\mathbb {C}}}\)-rank of multidigraphs

On the \({A_{\!\mathbb {C}}}\)-rank of multidigraphs

The complex adjacency matrix \({A_{\!\mathbb {C}}}(G)\) for a multidigraph G is introduced in Barik and Sahoo (AKCE Int J Graphs Comb 17(1):466–479, 2020). We study the rank of multidigraphs corresponding to the complex adjacency matrix and call it \({A_{\!\mathbb {C}}}\)-rank. It is known that a connected graph G has rank 2 if and only if G is a complete bipartite graph, and has rank 3 if and only if it is a complete tripartite graph (Cheng in Electron J Linear Algebra 16:60–67, 2007). We observe that these results hold as special cases for multidigraphs but are not sufficient. In this article, we characterize all multidigraphs with \({A_{\!\mathbb {C}}}\)-rank 2 and 3, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aequationes Mathematicae
Aequationes Mathematicae MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.70
自引率
12.50%
发文量
62
审稿时长
>12 weeks
期刊介绍: aequationes mathematicae is an international journal of pure and applied mathematics, which emphasizes functional equations, dynamical systems, iteration theory, combinatorics, and geometry. The journal publishes research papers, reports of meetings, and bibliographies. High quality survey articles are an especially welcome feature. In addition, summaries of recent developments and research in the field are published rapidly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信