{"title":"关于多图的 $${A_{\\!","authors":"Sasmita Barik, Sane Umesh Reddy","doi":"10.1007/s00010-023-01020-6","DOIUrl":null,"url":null,"abstract":"<div><p>The complex adjacency matrix <span>\\({A_{\\!\\mathbb {C}}}(G)\\)</span> for a multidigraph <i>G</i> is introduced in Barik and Sahoo (AKCE Int J Graphs Comb 17(1):466–479, 2020). We study the rank of multidigraphs corresponding to the complex adjacency matrix and call it <span>\\({A_{\\!\\mathbb {C}}}\\)</span>-rank. It is known that a connected graph <i>G</i> has rank 2 if and only if <i>G</i> is a complete bipartite graph, and has rank 3 if and only if it is a complete tripartite graph (Cheng in Electron J Linear Algebra 16:60–67, 2007). We observe that these results hold as special cases for multidigraphs but are not sufficient. In this article, we characterize all multidigraphs with <span>\\({A_{\\!\\mathbb {C}}}\\)</span>-rank 2 and 3, respectively.</p></div>","PeriodicalId":55611,"journal":{"name":"Aequationes Mathematicae","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the \\\\({A_{\\\\!\\\\mathbb {C}}}\\\\)-rank of multidigraphs\",\"authors\":\"Sasmita Barik, Sane Umesh Reddy\",\"doi\":\"10.1007/s00010-023-01020-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The complex adjacency matrix <span>\\\\({A_{\\\\!\\\\mathbb {C}}}(G)\\\\)</span> for a multidigraph <i>G</i> is introduced in Barik and Sahoo (AKCE Int J Graphs Comb 17(1):466–479, 2020). We study the rank of multidigraphs corresponding to the complex adjacency matrix and call it <span>\\\\({A_{\\\\!\\\\mathbb {C}}}\\\\)</span>-rank. It is known that a connected graph <i>G</i> has rank 2 if and only if <i>G</i> is a complete bipartite graph, and has rank 3 if and only if it is a complete tripartite graph (Cheng in Electron J Linear Algebra 16:60–67, 2007). We observe that these results hold as special cases for multidigraphs but are not sufficient. In this article, we characterize all multidigraphs with <span>\\\\({A_{\\\\!\\\\mathbb {C}}}\\\\)</span>-rank 2 and 3, respectively.</p></div>\",\"PeriodicalId\":55611,\"journal\":{\"name\":\"Aequationes Mathematicae\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aequationes Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00010-023-01020-6\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aequationes Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00010-023-01020-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
Barik 和 Sahoo(AKCE Int J Graphs Comb 17(1):466-479, 2020)介绍了多图 G 的复邻接矩阵 \({A_{/!\mathbb {C}}(G)\) 。)我们研究与复邻接矩阵相对应的多图的秩,并称之为 \({A_{\!\mathbb {C}}) -rank。众所周知,如果且仅如果连通图 G 是一个完整的二方图,那么它的秩为 2;如果且仅如果它是一个完整的三方图,那么它的秩为 3(Cheng 在 Electron J Linear Algebra 16:60-67, 2007 中)。我们注意到这些结果作为多图的特例是成立的,但并不充分。在本文中,我们将描述所有秩分别为 2 和 3 的多图。
On the \({A_{\!\mathbb {C}}}\)-rank of multidigraphs
The complex adjacency matrix \({A_{\!\mathbb {C}}}(G)\) for a multidigraph G is introduced in Barik and Sahoo (AKCE Int J Graphs Comb 17(1):466–479, 2020). We study the rank of multidigraphs corresponding to the complex adjacency matrix and call it \({A_{\!\mathbb {C}}}\)-rank. It is known that a connected graph G has rank 2 if and only if G is a complete bipartite graph, and has rank 3 if and only if it is a complete tripartite graph (Cheng in Electron J Linear Algebra 16:60–67, 2007). We observe that these results hold as special cases for multidigraphs but are not sufficient. In this article, we characterize all multidigraphs with \({A_{\!\mathbb {C}}}\)-rank 2 and 3, respectively.
期刊介绍:
aequationes mathematicae is an international journal of pure and applied mathematics, which emphasizes functional equations, dynamical systems, iteration theory, combinatorics, and geometry. The journal publishes research papers, reports of meetings, and bibliographies. High quality survey articles are an especially welcome feature. In addition, summaries of recent developments and research in the field are published rapidly.