有条件精确求解的一维狄拉克伪谱相互作用势能

IF 0.5 4区 物理与天体物理 Q4 PHYSICS, MULTIDISCIPLINARY
A. M. Ghazaryan, A. M. Ishkhanyan, V. M. Red’kov
{"title":"有条件精确求解的一维狄拉克伪谱相互作用势能","authors":"A. M. Ghazaryan,&nbsp;A. M. Ishkhanyan,&nbsp;V. M. Red’kov","doi":"10.1134/S1068337223030106","DOIUrl":null,"url":null,"abstract":"<p>We study an analytically solvable pseudoscalar interaction potential for the one-dimensional stationary Dirac equation, which consists of power terms proportional to <span>\\({{x}^{{ - 1}}}\\)</span>, <span>\\({{x}^{{ - 1/3}}}\\)</span>, and <span>\\({{x}^{{1/3}}}\\)</span>. This potential is classified as conditionally exactly solvable due to the fixed strength of the first term at a specific constant. We present the general solution to the Dirac equation in terms of non-integer index Hermite functions, which are distinct from the conventional integer index Hermite polynomials. We analyze the energy spectrum of the bound states and the eigenfunctions and compare the results with the case without the <span>\\({{x}^{{ - 1/3}}}\\)</span> term.</p>","PeriodicalId":623,"journal":{"name":"Journal of Contemporary Physics (Armenian Academy of Sciences)","volume":"58 3","pages":"212 - 219"},"PeriodicalIF":0.5000,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Conditionally Exactly Solvable 1D Dirac Pseudoscalar Interaction Potential\",\"authors\":\"A. M. Ghazaryan,&nbsp;A. M. Ishkhanyan,&nbsp;V. M. Red’kov\",\"doi\":\"10.1134/S1068337223030106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study an analytically solvable pseudoscalar interaction potential for the one-dimensional stationary Dirac equation, which consists of power terms proportional to <span>\\\\({{x}^{{ - 1}}}\\\\)</span>, <span>\\\\({{x}^{{ - 1/3}}}\\\\)</span>, and <span>\\\\({{x}^{{1/3}}}\\\\)</span>. This potential is classified as conditionally exactly solvable due to the fixed strength of the first term at a specific constant. We present the general solution to the Dirac equation in terms of non-integer index Hermite functions, which are distinct from the conventional integer index Hermite polynomials. We analyze the energy spectrum of the bound states and the eigenfunctions and compare the results with the case without the <span>\\\\({{x}^{{ - 1/3}}}\\\\)</span> term.</p>\",\"PeriodicalId\":623,\"journal\":{\"name\":\"Journal of Contemporary Physics (Armenian Academy of Sciences)\",\"volume\":\"58 3\",\"pages\":\"212 - 219\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Contemporary Physics (Armenian Academy of Sciences)\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1068337223030106\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Contemporary Physics (Armenian Academy of Sciences)","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1068337223030106","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要 我们研究了一维静止狄拉克方程的一个可分析求解的伪标量相互作用势,它由与\({{x}^{-1}}}\)、\({{x}^{-1/3}}}\)和\({{x}^{-1/3}}}\)成比例的幂项组成。由于第一项的强度固定在一个特定常数上,这个势被归类为有条件精确可解。我们用非整数指数赫米特函数给出了狄拉克方程的一般解,这与传统的整数指数赫米特多项式不同。我们分析了束缚态的能谱和特征函数,并将结果与不含\({{x}^{ - 1/3}}\) 项的情况进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Conditionally Exactly Solvable 1D Dirac Pseudoscalar Interaction Potential

A Conditionally Exactly Solvable 1D Dirac Pseudoscalar Interaction Potential

A Conditionally Exactly Solvable 1D Dirac Pseudoscalar Interaction Potential

We study an analytically solvable pseudoscalar interaction potential for the one-dimensional stationary Dirac equation, which consists of power terms proportional to \({{x}^{{ - 1}}}\), \({{x}^{{ - 1/3}}}\), and \({{x}^{{1/3}}}\). This potential is classified as conditionally exactly solvable due to the fixed strength of the first term at a specific constant. We present the general solution to the Dirac equation in terms of non-integer index Hermite functions, which are distinct from the conventional integer index Hermite polynomials. We analyze the energy spectrum of the bound states and the eigenfunctions and compare the results with the case without the \({{x}^{{ - 1/3}}}\) term.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
66.70%
发文量
43
审稿时长
6-12 weeks
期刊介绍: Journal of Contemporary Physics (Armenian Academy of Sciences) is a journal that covers all fields of modern physics. It publishes significant contributions in such areas of theoretical and applied science as interaction of elementary particles at superhigh energies, elementary particle physics, charged particle interactions with matter, physics of semiconductors and semiconductor devices, physics of condensed matter, radiophysics and radioelectronics, optics and quantum electronics, quantum size effects, nanophysics, sensorics, and superconductivity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信