{"title":"改进抛物线 PDE 时空 FOSLS 的速率","authors":"Gregor Gantner, Rob Stevenson","doi":"10.1007/s00211-023-01387-3","DOIUrl":null,"url":null,"abstract":"<p>We consider the first-order system space–time formulation of the heat equation introduced by Bochev and Gunzburger (in: Bochev and Gunzburger (eds) Applied mathematical sciences, vol 166, Springer, New York, 2009), and analyzed by Führer and Karkulik (Comput Math Appl 92:27–36, 2021) and Gantner and Stevenson (ESAIM Math Model Numer Anal 55(1):283–299 2021), with solution components <span>\\((u_1,\\textbf{u}_2)=(u,-\\nabla _\\textbf{x} u)\\)</span>. The corresponding operator is boundedly invertible between a Hilbert space <i>U</i> and a Cartesian product of <span>\\(L_2\\)</span>-type spaces, which facilitates easy first-order system least-squares (FOSLS) discretizations. Besides <span>\\(L_2\\)</span>-norms of <span>\\(\\nabla _\\textbf{x} u_1\\)</span> and <span>\\(\\textbf{u}_2\\)</span>, the (graph) norm of <i>U</i> contains the <span>\\(L_2\\)</span>-norm of <span>\\(\\partial _t u_1 +{{\\,\\textrm{div}\\,}}_\\textbf{x} \\textbf{u}_2\\)</span>. When applying standard finite elements w.r.t. simplicial partitions of the space–time cylinder, estimates of the approximation error w.r.t. the latter norm require higher-order smoothness of <span>\\(\\textbf{u}_2\\)</span>. In experiments for both uniform and adaptively refined partitions, this manifested itself in disappointingly low convergence rates for non-smooth solutions <i>u</i>. In this paper, we construct finite element spaces w.r.t. prismatic partitions. They come with a quasi-interpolant that satisfies a near commuting diagram in the sense that, apart from some harmless term, the aforementioned error depends exclusively on the smoothness of <span>\\(\\partial _t u_1 +{{\\,\\textrm{div}\\,}}_\\textbf{x} \\textbf{u}_2\\)</span>, i.e., of the forcing term <span>\\(f=(\\partial _t-\\Delta _x)u\\)</span>. Numerical results show significantly improved convergence rates.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved rates for a space–time FOSLS of parabolic PDEs\",\"authors\":\"Gregor Gantner, Rob Stevenson\",\"doi\":\"10.1007/s00211-023-01387-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider the first-order system space–time formulation of the heat equation introduced by Bochev and Gunzburger (in: Bochev and Gunzburger (eds) Applied mathematical sciences, vol 166, Springer, New York, 2009), and analyzed by Führer and Karkulik (Comput Math Appl 92:27–36, 2021) and Gantner and Stevenson (ESAIM Math Model Numer Anal 55(1):283–299 2021), with solution components <span>\\\\((u_1,\\\\textbf{u}_2)=(u,-\\\\nabla _\\\\textbf{x} u)\\\\)</span>. The corresponding operator is boundedly invertible between a Hilbert space <i>U</i> and a Cartesian product of <span>\\\\(L_2\\\\)</span>-type spaces, which facilitates easy first-order system least-squares (FOSLS) discretizations. Besides <span>\\\\(L_2\\\\)</span>-norms of <span>\\\\(\\\\nabla _\\\\textbf{x} u_1\\\\)</span> and <span>\\\\(\\\\textbf{u}_2\\\\)</span>, the (graph) norm of <i>U</i> contains the <span>\\\\(L_2\\\\)</span>-norm of <span>\\\\(\\\\partial _t u_1 +{{\\\\,\\\\textrm{div}\\\\,}}_\\\\textbf{x} \\\\textbf{u}_2\\\\)</span>. When applying standard finite elements w.r.t. simplicial partitions of the space–time cylinder, estimates of the approximation error w.r.t. the latter norm require higher-order smoothness of <span>\\\\(\\\\textbf{u}_2\\\\)</span>. In experiments for both uniform and adaptively refined partitions, this manifested itself in disappointingly low convergence rates for non-smooth solutions <i>u</i>. In this paper, we construct finite element spaces w.r.t. prismatic partitions. They come with a quasi-interpolant that satisfies a near commuting diagram in the sense that, apart from some harmless term, the aforementioned error depends exclusively on the smoothness of <span>\\\\(\\\\partial _t u_1 +{{\\\\,\\\\textrm{div}\\\\,}}_\\\\textbf{x} \\\\textbf{u}_2\\\\)</span>, i.e., of the forcing term <span>\\\\(f=(\\\\partial _t-\\\\Delta _x)u\\\\)</span>. Numerical results show significantly improved convergence rates.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00211-023-01387-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00211-023-01387-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
摘要
我们考虑 Bochev 和 Gunzburger 引入的热方程一阶系统时空表述(见 Bochev 和 Gunzburger(编)《应用数学科学》第 166 卷,施普林格出版社,纽约,2009 年),以及 Führer 和 Karkulik 对其进行的分析(《计算数学应用》,纽约,2009 年):Führer and Karkulik (Comput Math Appl 92:27-36, 2021) and Gantner and Stevenson (ESAIM Math Model Numer Anal 55(1):283-299 2021) 对其进行了分析,其解分量为 \((u_1,\textbf{u}_2)=(u,-\nabla _textbf{x} u)\)。相应的算子在希尔伯特空间 U 和 \(L_2\)-type 空间的笛卡尔乘积之间是有界可逆的,这便于一阶系统最小二乘(FOSLS)离散化。除了\(\nabla _\textbf{x} u_1\) 和\(\textbf{u}_2\)的\(L_2\)-规范外,U的(图)规范还包含\(\partial _t u_1 +{\,\textrm{div}\,}}_\textbf{x} \textbf{u}_2\)的\(L_2\)-规范。当应用标准有限元对时空圆柱体进行简分时,对后一种规范的近似误差估计需要 \(\textbf{u}_2\) 的高阶平稳性。在均匀分区和自适应细化分区的实验中,非光滑解 u 的收敛率低得令人失望。它们带有一个准内插值,该准内插值满足近似换向图的意义,即除了一些无害项之外,上述误差完全取决于 \(\partial _t u_1 +{{\textrm{div}\,}}_\textbf{x} \textbf{u}_2/)的光滑度,即强制项 \(f=(\partial _t-\Delta _x)u/)的光滑度。数值结果表明收敛速度明显提高。
Improved rates for a space–time FOSLS of parabolic PDEs
We consider the first-order system space–time formulation of the heat equation introduced by Bochev and Gunzburger (in: Bochev and Gunzburger (eds) Applied mathematical sciences, vol 166, Springer, New York, 2009), and analyzed by Führer and Karkulik (Comput Math Appl 92:27–36, 2021) and Gantner and Stevenson (ESAIM Math Model Numer Anal 55(1):283–299 2021), with solution components \((u_1,\textbf{u}_2)=(u,-\nabla _\textbf{x} u)\). The corresponding operator is boundedly invertible between a Hilbert space U and a Cartesian product of \(L_2\)-type spaces, which facilitates easy first-order system least-squares (FOSLS) discretizations. Besides \(L_2\)-norms of \(\nabla _\textbf{x} u_1\) and \(\textbf{u}_2\), the (graph) norm of U contains the \(L_2\)-norm of \(\partial _t u_1 +{{\,\textrm{div}\,}}_\textbf{x} \textbf{u}_2\). When applying standard finite elements w.r.t. simplicial partitions of the space–time cylinder, estimates of the approximation error w.r.t. the latter norm require higher-order smoothness of \(\textbf{u}_2\). In experiments for both uniform and adaptively refined partitions, this manifested itself in disappointingly low convergence rates for non-smooth solutions u. In this paper, we construct finite element spaces w.r.t. prismatic partitions. They come with a quasi-interpolant that satisfies a near commuting diagram in the sense that, apart from some harmless term, the aforementioned error depends exclusively on the smoothness of \(\partial _t u_1 +{{\,\textrm{div}\,}}_\textbf{x} \textbf{u}_2\), i.e., of the forcing term \(f=(\partial _t-\Delta _x)u\). Numerical results show significantly improved convergence rates.