M. D. Smolikov, L. I. Bikmetova, K. V. Kazantsev, V. A. Skurenok, S. S. Yablokova, A. V. Lavrenov
{"title":"用于己烷异构化的二氧化硅和氧化铝支撑硫酸化氧化锆催化剂:支撑性质的影响","authors":"M. D. Smolikov, L. I. Bikmetova, K. V. Kazantsev, V. A. Skurenok, S. S. Yablokova, A. V. Lavrenov","doi":"10.1134/S2070050423040116","DOIUrl":null,"url":null,"abstract":"<p>The effect of the support nature on the hexane isomerization reaction parameters for SiO<sub>2</sub>- and Al<sub>2</sub>O<sub>3</sub>-supported sulfated zirconia catalysts with different textural characteristics has been studied. It has been shown that a higher hexane conversion is achieved in the presence of sulfated zirconia catalysts supported on aluminas. Using IR spectroscopy of adsorbed CO, it has been found that, in the Al<sub>2</sub>O<sub>3</sub>-supported catalysts, the concentration of Brønsted acid sites (BAS) characterized by adsorbed CO with an absorption band at 2170 cm<sup>–1</sup> and strong Lewis acid sites (LAS) characterized by adsorbed CO with absorption bands at 2210 and 2224 cm<sup>–1</sup> is higher than that in the SiO<sub>2</sub>-supported catalysts. In the Al<sub>2</sub>O<sub>3</sub>-supported catalysts with different textural characteristics, an increase in the contribution of LAS to the total acidity leads to a significant increase in the high-octane 2,2-dimethylbutane yield and the hexane isomerization depth.</p>","PeriodicalId":507,"journal":{"name":"Catalysis in Industry","volume":"15 4","pages":"350 - 356"},"PeriodicalIF":0.7000,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Silica- and Alumina-Supported Sulfated Zirconia Catalysts for Hexane Isomerization: Effect of the Support Nature\",\"authors\":\"M. D. Smolikov, L. I. Bikmetova, K. V. Kazantsev, V. A. Skurenok, S. S. Yablokova, A. V. Lavrenov\",\"doi\":\"10.1134/S2070050423040116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The effect of the support nature on the hexane isomerization reaction parameters for SiO<sub>2</sub>- and Al<sub>2</sub>O<sub>3</sub>-supported sulfated zirconia catalysts with different textural characteristics has been studied. It has been shown that a higher hexane conversion is achieved in the presence of sulfated zirconia catalysts supported on aluminas. Using IR spectroscopy of adsorbed CO, it has been found that, in the Al<sub>2</sub>O<sub>3</sub>-supported catalysts, the concentration of Brønsted acid sites (BAS) characterized by adsorbed CO with an absorption band at 2170 cm<sup>–1</sup> and strong Lewis acid sites (LAS) characterized by adsorbed CO with absorption bands at 2210 and 2224 cm<sup>–1</sup> is higher than that in the SiO<sub>2</sub>-supported catalysts. In the Al<sub>2</sub>O<sub>3</sub>-supported catalysts with different textural characteristics, an increase in the contribution of LAS to the total acidity leads to a significant increase in the high-octane 2,2-dimethylbutane yield and the hexane isomerization depth.</p>\",\"PeriodicalId\":507,\"journal\":{\"name\":\"Catalysis in Industry\",\"volume\":\"15 4\",\"pages\":\"350 - 356\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis in Industry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S2070050423040116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis in Industry","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2070050423040116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
摘要
摘要 研究了具有不同质地特征的 SiO2- 和 Al2O3 支持的硫酸化氧化锆催化剂的支持性质对正己烷异构化反应参数的影响。结果表明,在铝支撑的硫酸化氧化锆催化剂存在的情况下,己烷转化率更高。利用吸附 CO 的红外光谱发现,在 Al2O3 支承的催化剂中,以吸附 CO 的吸收带在 2170 cm-1 处为特征的布氏酸位点 (BAS) 和以吸附 CO 的吸收带在 2210 和 2224 cm-1 处为特征的强路易斯酸位点 (LAS) 的浓度高于 SiO2 支承的催化剂。在具有不同质地特征的 Al2O3 支承催化剂中,增加 LAS 对总酸度的贡献会显著提高 2,2-二甲基丁烷的高辛烷产率和己烷异构化深度。
Silica- and Alumina-Supported Sulfated Zirconia Catalysts for Hexane Isomerization: Effect of the Support Nature
The effect of the support nature on the hexane isomerization reaction parameters for SiO2- and Al2O3-supported sulfated zirconia catalysts with different textural characteristics has been studied. It has been shown that a higher hexane conversion is achieved in the presence of sulfated zirconia catalysts supported on aluminas. Using IR spectroscopy of adsorbed CO, it has been found that, in the Al2O3-supported catalysts, the concentration of Brønsted acid sites (BAS) characterized by adsorbed CO with an absorption band at 2170 cm–1 and strong Lewis acid sites (LAS) characterized by adsorbed CO with absorption bands at 2210 and 2224 cm–1 is higher than that in the SiO2-supported catalysts. In the Al2O3-supported catalysts with different textural characteristics, an increase in the contribution of LAS to the total acidity leads to a significant increase in the high-octane 2,2-dimethylbutane yield and the hexane isomerization depth.
期刊介绍:
The journal covers the following topical areas:
Analysis of specific industrial catalytic processes: Production and use of catalysts in branches of industry: chemical, petrochemical, oil-refining, pharmaceutical, organic synthesis, fuel-energetic industries, environment protection, biocatalysis; technology of industrial catalytic processes (generalization of practical experience, improvements, and modernization); technology of catalysts production, raw materials and equipment; control of catalysts quality; starting, reduction, passivation, discharge, storage of catalysts; catalytic reactors.Theoretical foundations of industrial catalysis and technologies: Research, studies, and concepts : search for and development of new catalysts and new types of supports, formation of active components, and mechanochemistry in catalysis; comprehensive studies of work-out catalysts and analysis of deactivation mechanisms; studies of the catalytic process at different scale levels (laboratory, pilot plant, industrial); kinetics of industrial and newly developed catalytic processes and development of kinetic models; nonlinear dynamics and nonlinear phenomena in catalysis: multiplicity of stationary states, stepwise changes in regimes, etc. Advances in catalysis: Catalysis and gas chemistry; catalysis and new energy technologies; biocatalysis; nanocatalysis; catalysis and new construction materials.History of the development of industrial catalysis.