基于构建的等转化状态图的单步动力学预测

IF 1.8 4区 工程技术 Q3 POLYMER SCIENCE
Qi Tao, Thomas Krivec, Wolfgang Kern
{"title":"基于构建的等转化状态图的单步动力学预测","authors":"Qi Tao,&nbsp;Thomas Krivec,&nbsp;Wolfgang Kern","doi":"10.1002/mats.202300066","DOIUrl":null,"url":null,"abstract":"<p>A new concept called isoconversional state diagram, which can be used to predict the kinetics of single-step condensed phase reactions, is introduced. A state represents a certain extent of conversion degree α in a reaction. The construction of the isoconversional state diagram is based on the isoconversional state equation, which is a piecewise linear equation about 1/<i>T</i> and <i>ln</i>β, where <i>T</i> is the temperature and β is the heating rate. The slope of the linear equation is controlled by the activation energy <i>E</i><sub>α</sub> and its intercept contains the inherent information of the kinetic triplet, i.e., the pre-exponential factor <i>A</i><sub>α</sub>, the activation energy <i>E</i><sub>α</sub> and the reaction model <i>f</i>(α). Consequently, the geometric methods for nonisothermal and isothermal kinetic predictions are derived. The latter reflects the physical meaning of the relationship between reactions under isothermal and nonisothermal conditions, i.e., the time to advance from α<sub>i</sub> to α<sub>i+1</sub> at isothermal temperature <i>T</i><sub>iso</sub> is equal to the time to heat from <i>T</i><sub>iso</sub> to <span></span><math>\n <semantics>\n <msub>\n <mi>T</mi>\n <mrow>\n <msub>\n <mi>α</mi>\n <mi>i</mi>\n </msub>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n </msub>\n <annotation>${T}_{{\\alpha }_i + 1}$</annotation>\n </semantics></math> under heating rate <span></span><math>\n <semantics>\n <msub>\n <mi>β</mi>\n <msub>\n <mi>α</mi>\n <mi>i</mi>\n </msub>\n </msub>\n <annotation>${{{\\beta}}}_{{{{\\alpha}}}_i}$</annotation>\n </semantics></math>, where <i>T</i><sub>iso</sub>, <span></span><math>\n <semantics>\n <msub>\n <mi>T</mi>\n <mrow>\n <msub>\n <mi>α</mi>\n <mi>i</mi>\n </msub>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n </msub>\n <annotation>${T}_{{\\alpha }_i + 1}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <msub>\n <mi>β</mi>\n <msub>\n <mi>α</mi>\n <mi>i</mi>\n </msub>\n </msub>\n <annotation>${{{\\beta}}}_{{{{\\alpha}}}_i}$</annotation>\n </semantics></math>must be determined from the isoconversional state diagram.</p>","PeriodicalId":18157,"journal":{"name":"Macromolecular Theory and Simulations","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-Step Kinetic Predictions Based on a Constructed Isoconversional State Diagram\",\"authors\":\"Qi Tao,&nbsp;Thomas Krivec,&nbsp;Wolfgang Kern\",\"doi\":\"10.1002/mats.202300066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A new concept called isoconversional state diagram, which can be used to predict the kinetics of single-step condensed phase reactions, is introduced. A state represents a certain extent of conversion degree α in a reaction. The construction of the isoconversional state diagram is based on the isoconversional state equation, which is a piecewise linear equation about 1/<i>T</i> and <i>ln</i>β, where <i>T</i> is the temperature and β is the heating rate. The slope of the linear equation is controlled by the activation energy <i>E</i><sub>α</sub> and its intercept contains the inherent information of the kinetic triplet, i.e., the pre-exponential factor <i>A</i><sub>α</sub>, the activation energy <i>E</i><sub>α</sub> and the reaction model <i>f</i>(α). Consequently, the geometric methods for nonisothermal and isothermal kinetic predictions are derived. The latter reflects the physical meaning of the relationship between reactions under isothermal and nonisothermal conditions, i.e., the time to advance from α<sub>i</sub> to α<sub>i+1</sub> at isothermal temperature <i>T</i><sub>iso</sub> is equal to the time to heat from <i>T</i><sub>iso</sub> to <span></span><math>\\n <semantics>\\n <msub>\\n <mi>T</mi>\\n <mrow>\\n <msub>\\n <mi>α</mi>\\n <mi>i</mi>\\n </msub>\\n <mo>+</mo>\\n <mn>1</mn>\\n </mrow>\\n </msub>\\n <annotation>${T}_{{\\\\alpha }_i + 1}$</annotation>\\n </semantics></math> under heating rate <span></span><math>\\n <semantics>\\n <msub>\\n <mi>β</mi>\\n <msub>\\n <mi>α</mi>\\n <mi>i</mi>\\n </msub>\\n </msub>\\n <annotation>${{{\\\\beta}}}_{{{{\\\\alpha}}}_i}$</annotation>\\n </semantics></math>, where <i>T</i><sub>iso</sub>, <span></span><math>\\n <semantics>\\n <msub>\\n <mi>T</mi>\\n <mrow>\\n <msub>\\n <mi>α</mi>\\n <mi>i</mi>\\n </msub>\\n <mo>+</mo>\\n <mn>1</mn>\\n </mrow>\\n </msub>\\n <annotation>${T}_{{\\\\alpha }_i + 1}$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <msub>\\n <mi>β</mi>\\n <msub>\\n <mi>α</mi>\\n <mi>i</mi>\\n </msub>\\n </msub>\\n <annotation>${{{\\\\beta}}}_{{{{\\\\alpha}}}_i}$</annotation>\\n </semantics></math>must be determined from the isoconversional state diagram.</p>\",\"PeriodicalId\":18157,\"journal\":{\"name\":\"Macromolecular Theory and Simulations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Theory and Simulations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mats.202300066\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mats.202300066","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一个新概念,即等转化状态图,它可用于预测单步凝聚相反应的动力学。一个状态代表反应中一定程度的转化率 α。等转化状态图的构建基于等转化状态方程,这是一个关于 1/T 和 lnβ 的片断线性方程,其中 T 是温度,β 是加热速率。线性方程的斜率由活化能 Eα 控制,其截距包含动力学三元组的固有信息,即预指数因子 Aα、活化能 Eα 和反应模型 f(α)。因此,得出了非等温和等温动力学预测的几何方法。后者反映了等温和非等温条件下反应之间关系的物理意义,即在等温温度 Tiso 下,从 αi 进入 αi+1 的时间等于从 Tiso 加热到 Tαi+1 的时间${T_{\{α_i}}$。+ 1}}$在加热速率 βαi${{\rm{\beta }}_{{{\rm{\alpha }}_i}}}$ 下,其中 Tiso、Tαi+1${T_{{\alpha _i}+ 1}}$ 和 βαi${{\rm{beta }}_{{{rm{\alpha }}_i}}$ 必须从等转换状态图中确定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Single-Step Kinetic Predictions Based on a Constructed Isoconversional State Diagram

Single-Step Kinetic Predictions Based on a Constructed Isoconversional State Diagram

A new concept called isoconversional state diagram, which can be used to predict the kinetics of single-step condensed phase reactions, is introduced. A state represents a certain extent of conversion degree α in a reaction. The construction of the isoconversional state diagram is based on the isoconversional state equation, which is a piecewise linear equation about 1/T and lnβ, where T is the temperature and β is the heating rate. The slope of the linear equation is controlled by the activation energy Eα and its intercept contains the inherent information of the kinetic triplet, i.e., the pre-exponential factor Aα, the activation energy Eα and the reaction model f(α). Consequently, the geometric methods for nonisothermal and isothermal kinetic predictions are derived. The latter reflects the physical meaning of the relationship between reactions under isothermal and nonisothermal conditions, i.e., the time to advance from αi to αi+1 at isothermal temperature Tiso is equal to the time to heat from Tiso to T α i + 1 ${T}_{{\alpha }_i + 1}$ under heating rate β α i ${{{\beta}}}_{{{{\alpha}}}_i}$ , where Tiso, T α i + 1 ${T}_{{\alpha }_i + 1}$ and β α i ${{{\beta}}}_{{{{\alpha}}}_i}$ must be determined from the isoconversional state diagram.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Macromolecular Theory and Simulations
Macromolecular Theory and Simulations 工程技术-高分子科学
CiteScore
3.00
自引率
14.30%
发文量
45
审稿时长
2 months
期刊介绍: Macromolecular Theory and Simulations is the only high-quality polymer science journal dedicated exclusively to theory and simulations, covering all aspects from macromolecular theory to advanced computer simulation techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信