硬核玻色子的小波表示法

IF 2.2 3区 物理与天体物理 Q2 MECHANICS
Etienne Granet
{"title":"硬核玻色子的小波表示法","authors":"Etienne Granet","doi":"10.1088/1742-5468/ad082c","DOIUrl":null,"url":null,"abstract":"We consider the one-dimensional Tonks–Girardeau gas with a space-dependent potential out of equilibrium. We derive the exact dynamics of the system when divided into <italic toggle=\"yes\">n</italic> boxes and decomposed into energy eigenstates within each box. It is a representation of the wave function that is a mixture between real space and momentum space, with basis elements consisting of plane waves localized in a box, giving rise to the term ‘wavelet’. Using this representation, we derive the emergence of generalized hydrodynamics in appropriate limits without assuming local relaxation. We emphasize that a generalized hydrodynamic behaviour emerges in a high-momentum and short-time limit, in addition to the more common large-space and late-time limit, which is akin to a semi-classical expansion. In this limit, conserved charges do not require numerous particles to be described by generalized hydrodynamics. We also show that this wavelet representation provides an efficient numerical algorithm for a complete description of the out-of-equilibrium dynamics of hardcore bosons.","PeriodicalId":17207,"journal":{"name":"Journal of Statistical Mechanics: Theory and Experiment","volume":"41 10 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wavelet representation of hardcore bosons\",\"authors\":\"Etienne Granet\",\"doi\":\"10.1088/1742-5468/ad082c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the one-dimensional Tonks–Girardeau gas with a space-dependent potential out of equilibrium. We derive the exact dynamics of the system when divided into <italic toggle=\\\"yes\\\">n</italic> boxes and decomposed into energy eigenstates within each box. It is a representation of the wave function that is a mixture between real space and momentum space, with basis elements consisting of plane waves localized in a box, giving rise to the term ‘wavelet’. Using this representation, we derive the emergence of generalized hydrodynamics in appropriate limits without assuming local relaxation. We emphasize that a generalized hydrodynamic behaviour emerges in a high-momentum and short-time limit, in addition to the more common large-space and late-time limit, which is akin to a semi-classical expansion. In this limit, conserved charges do not require numerous particles to be described by generalized hydrodynamics. We also show that this wavelet representation provides an efficient numerical algorithm for a complete description of the out-of-equilibrium dynamics of hardcore bosons.\",\"PeriodicalId\":17207,\"journal\":{\"name\":\"Journal of Statistical Mechanics: Theory and Experiment\",\"volume\":\"41 10 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Mechanics: Theory and Experiment\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1742-5468/ad082c\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Mechanics: Theory and Experiment","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1742-5468/ad082c","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了一维唐克斯-吉拉尔多气体与空间相关的失衡势。我们推导出该系统被划分为 n 个方框并在每个方框内分解为能量特征状态时的精确动力学。这是一种介于实空间和动量空间之间的混合波函数表示法,其基元由定位在方框中的平面波组成,这就是 "小波 "一词的由来。利用这种表示法,我们推导出了在适当极限下出现的广义流体力学,而无需假设局部松弛。我们强调,除了更常见的大空间和晚时间极限(类似于半经典扩展)外,广义流体力学行为还出现在高动量和短时间极限中。在这个极限中,守恒电荷不需要用广义流体力学来描述众多粒子。我们还证明,这种小波表示法为完整描述铁核玻色子的失衡动力学提供了一种高效的数值算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wavelet representation of hardcore bosons
We consider the one-dimensional Tonks–Girardeau gas with a space-dependent potential out of equilibrium. We derive the exact dynamics of the system when divided into n boxes and decomposed into energy eigenstates within each box. It is a representation of the wave function that is a mixture between real space and momentum space, with basis elements consisting of plane waves localized in a box, giving rise to the term ‘wavelet’. Using this representation, we derive the emergence of generalized hydrodynamics in appropriate limits without assuming local relaxation. We emphasize that a generalized hydrodynamic behaviour emerges in a high-momentum and short-time limit, in addition to the more common large-space and late-time limit, which is akin to a semi-classical expansion. In this limit, conserved charges do not require numerous particles to be described by generalized hydrodynamics. We also show that this wavelet representation provides an efficient numerical algorithm for a complete description of the out-of-equilibrium dynamics of hardcore bosons.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.50
自引率
12.50%
发文量
210
审稿时长
1.0 months
期刊介绍: JSTAT is targeted to a broad community interested in different aspects of statistical physics, which are roughly defined by the fields represented in the conferences called ''Statistical Physics''. Submissions from experimentalists working on all the topics which have some ''connection to statistical physics are also strongly encouraged. The journal covers different topics which correspond to the following keyword sections. 1. Quantum statistical physics, condensed matter, integrable systems Scientific Directors: Eduardo Fradkin and Giuseppe Mussardo 2. Classical statistical mechanics, equilibrium and non-equilibrium Scientific Directors: David Mukamel, Matteo Marsili and Giuseppe Mussardo 3. Disordered systems, classical and quantum Scientific Directors: Eduardo Fradkin and Riccardo Zecchina 4. Interdisciplinary statistical mechanics Scientific Directors: Matteo Marsili and Riccardo Zecchina 5. Biological modelling and information Scientific Directors: Matteo Marsili, William Bialek and Riccardo Zecchina
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信