{"title":"与椭圆曲线的扭转相交","authors":"NATALIA GARCIA-FRITZ, HECTOR PASTEN","doi":"10.1017/s000497272300134x","DOIUrl":null,"url":null,"abstract":"Bogomolov and Tschinkel [‘Algebraic varieties over small fields’, <jats:italic>Diophantine Geometry</jats:italic>, U. Zannier (ed.), CRM Series, 4 (Scuola Normale Superiore di Pisa, Pisa, 2007), 73–91] proved that, given two complex elliptic curves <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S000497272300134X_inline1.png\" /> <jats:tex-math> $E_1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S000497272300134X_inline2.png\" /> <jats:tex-math> $E_2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> along with even degree-<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S000497272300134X_inline3.png\" /> <jats:tex-math> $2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> maps <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S000497272300134X_inline4.png\" /> <jats:tex-math> $\\pi _j\\colon E_j\\to \\mathbb {P}^1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> having different branch loci, the intersection of the image of the torsion points of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S000497272300134X_inline5.png\" /> <jats:tex-math> $E_1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S000497272300134X_inline6.png\" /> <jats:tex-math> $E_2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> under their respective <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S000497272300134X_inline7.png\" /> <jats:tex-math> $\\pi _j$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is finite. They conjectured (also in works with Fu) that the cardinality of this intersection is uniformly bounded independently of the elliptic curves. The recent proof of the uniform Manin–Mumford conjecture implies a full solution of the Bogomolov–Fu–Tschinkel conjecture. In this paper, we prove a generalisation of the Bogomolov–Fu–Tschinkel conjecture whereby, instead of even degree-<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S000497272300134X_inline8.png\" /> <jats:tex-math> $2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> maps, one can use any rational functions of bounded degree on the elliptic curves as long as they have different branch loci. Our approach combines Nevanlinna theory with the uniform Manin–Mumford conjecture. With similar techniques, we also prove a result on lower bounds for ranks of elliptic curves over number fields.","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"30 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"INTERSECTING THE TORSION OF ELLIPTIC CURVES\",\"authors\":\"NATALIA GARCIA-FRITZ, HECTOR PASTEN\",\"doi\":\"10.1017/s000497272300134x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bogomolov and Tschinkel [‘Algebraic varieties over small fields’, <jats:italic>Diophantine Geometry</jats:italic>, U. Zannier (ed.), CRM Series, 4 (Scuola Normale Superiore di Pisa, Pisa, 2007), 73–91] proved that, given two complex elliptic curves <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S000497272300134X_inline1.png\\\" /> <jats:tex-math> $E_1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S000497272300134X_inline2.png\\\" /> <jats:tex-math> $E_2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> along with even degree-<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S000497272300134X_inline3.png\\\" /> <jats:tex-math> $2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> maps <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S000497272300134X_inline4.png\\\" /> <jats:tex-math> $\\\\pi _j\\\\colon E_j\\\\to \\\\mathbb {P}^1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> having different branch loci, the intersection of the image of the torsion points of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S000497272300134X_inline5.png\\\" /> <jats:tex-math> $E_1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S000497272300134X_inline6.png\\\" /> <jats:tex-math> $E_2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> under their respective <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S000497272300134X_inline7.png\\\" /> <jats:tex-math> $\\\\pi _j$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is finite. They conjectured (also in works with Fu) that the cardinality of this intersection is uniformly bounded independently of the elliptic curves. The recent proof of the uniform Manin–Mumford conjecture implies a full solution of the Bogomolov–Fu–Tschinkel conjecture. In this paper, we prove a generalisation of the Bogomolov–Fu–Tschinkel conjecture whereby, instead of even degree-<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S000497272300134X_inline8.png\\\" /> <jats:tex-math> $2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> maps, one can use any rational functions of bounded degree on the elliptic curves as long as they have different branch loci. Our approach combines Nevanlinna theory with the uniform Manin–Mumford conjecture. With similar techniques, we also prove a result on lower bounds for ranks of elliptic curves over number fields.\",\"PeriodicalId\":50720,\"journal\":{\"name\":\"Bulletin of the Australian Mathematical Society\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Australian Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s000497272300134x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s000497272300134x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Bogomolov and Tschinkel [‘Algebraic varieties over small fields’, Diophantine Geometry, U. Zannier (ed.), CRM Series, 4 (Scuola Normale Superiore di Pisa, Pisa, 2007), 73–91] proved that, given two complex elliptic curves $E_1$ and $E_2$ along with even degree- $2$ maps $\pi _j\colon E_j\to \mathbb {P}^1$ having different branch loci, the intersection of the image of the torsion points of $E_1$ and $E_2$ under their respective $\pi _j$ is finite. They conjectured (also in works with Fu) that the cardinality of this intersection is uniformly bounded independently of the elliptic curves. The recent proof of the uniform Manin–Mumford conjecture implies a full solution of the Bogomolov–Fu–Tschinkel conjecture. In this paper, we prove a generalisation of the Bogomolov–Fu–Tschinkel conjecture whereby, instead of even degree- $2$ maps, one can use any rational functions of bounded degree on the elliptic curves as long as they have different branch loci. Our approach combines Nevanlinna theory with the uniform Manin–Mumford conjecture. With similar techniques, we also prove a result on lower bounds for ranks of elliptic curves over number fields.
期刊介绍:
Bulletin of the Australian Mathematical Society aims at quick publication of original research in all branches of mathematics. Papers are accepted only after peer review but editorial decisions on acceptance or otherwise are taken quickly, normally within a month of receipt of the paper. The Bulletin concentrates on presenting new and interesting results in a clear and attractive way.
Published Bi-monthly
Published for the Australian Mathematical Society